深度学习Keras框架笔记之Activation类使用

   使用    

1
keras.layers.core.Activation(activation)

  Apply an activation function tothe input.(貌似是把激活函数应用到输入数据的一种层结构)

       inputshape: 任意。当把这层作为某个模型的第一层时,需要用到该参数(元组,不包含样本轴)。

       outputshape:同input shape

       参数:

  •        activation:编码器,是一个layer类型或layer容器类型。
  •        decoder:解码器,是一个layer类型或layer容器类型。
  •        output_reconstruction:boolean。值为False时,调用predict()函数时,输出是经过最深隐层的激活函数。(这一块还不太了解,待以后了解了再补充)
  •        weights:激活函数名称或者Theano function。可以使用Keras内置的,也可以是传递自己编写的Theano function。如果不明确指定,那么将没有激活函数会被应用。
posted @   圆柱模板  阅读(2809)  评论(0编辑  收藏  举报
编辑推荐:
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
点击右上角即可分享
微信分享提示