深度学习Keras框架笔记之TimeDistributedDense类
深度学习Keras框架笔记之TimeDistributedDense类使用方法笔记
例:
1 2 3 | keras.layers.core.TimeDistributedDense(output_dim,init = 'glorot_uniform' , activation = 'linear' , weights = None W_regularizer = None , b_regularizer = None , activity_regularizer = None , W_constraint = None , b_constraint = None , input_dim = None , input_length = None ) |
这是一个基于时间维度的全连接层。主要就是用来构建RNN(递归神经网络)的,但是在构建RNN时需要设置return_sequences=True。
inputshape: 3维 tensor(nb_samples, timesteps,input_dim)
参数:
- output_dim: int >= 0,输出结果的维度
- init : 初始化权值的函数名称或Theano function。可以使用Keras内置的,也可以传递自己编写的Theano function。如果不给weights传递参数时,则该参数必须指明。
- activation : 激活函数名称或者Theano function。可以使用Keras内置的,也可以是传递自己编写的Theano function。如果不明确指定,那么将没有激活函数会被应用。
- weights :用于初始化权值的numpy arrays组成的list。这个List至少有1个元素,其shape为(input_dim, output_dim)。(如果指定init了,那么weights可以赋值None)
- W_regularizer:权值的规则化项,必须传入一个WeightRegularizer的实例(比如L1或L2规则化项)。
- b_regularizer:偏置值的规则化项,必须传入一个WeightRegularizer的实例(比如L1或L2规则化项)。
- activity_regularizer:网络输出的规则化项,必须传入一个ActivityRegularizer的实例。
- W_constraint:权值约束,必须传入一个constraints的实例。
- b_constraint:偏置约束,必须传入一个constraints的实例。
- input_dim:输入数据的维度。这个参数会在模型的第一层中用到。
- input_length:Length of input sequences, whenit is constant. This argument is required if you are going to connect Flattenthen Dense layers upstream (without it, the shape of the dense outputs cannotbe computed).
- 例如:
-
123
# input shape: (nb_samples, timesteps,10)
model.add(LSTM(
5
, return_sequences
=
True
, input_dim
=
10
))
# output shape: (nb_samples, timesteps, 5)
model.add(TimeDistributedDense(
15
))
# output shape:(nb_samples, timesteps, 15)
千行代码,Bug何处藏。 纵使上线又怎样,朝令改,夕断肠。
分类:
Python开发笔记
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具