深度学习Keras框架笔记之Dense类(标准的一维全连接层)
深度学习Keras框架笔记之Dense类(标准的一维全连接层)
例:
1 2 3 | keras.layers.core.Dense(output_dim,init = 'glorot_uniform' , activation = 'linear' , weights = None W_regularizer = None , b_regularizer = None , activity_regularizer = None , W_constraint = None , b_constraint = None , input_dim = None ) |
inputshape: 2维 tensor(nb_samples, input_dim)
outputshape: 2维 tensor(nb_samples, output_dim)
参数:
- output_dim: int >= 0,输出结果的维度
- init : 初始化权值的函数名称或Theano function。可以使用Keras内置的,也可以传递自己编写的Theano function。如果不给weights传递参数时,则该参数必须指明。
- activation : 激活函数名称或者Theano function。可以使用Keras内置的,也可以是传递自己编写的Theano function。如果不明确指定,那么将没有激活函数会被应用。
- weights :用于初始化权值的numpy arrays组成的list。这个List至少有1个元素,其shape为(input_dim, output_dim)。(如果指定init了,那么weights可以赋值None)
- W_regularizer:权值的规则化项,必须传入一个WeightRegularizer的实例(比如L1或L2规则化项。)
- b_regularizer:偏置值的规则化项,必须传入一个WeightRegularizer的实例(比如L1或L2规则化项)。
- activity_regularizer:网络输出的规则化项,必须传入一个ActivityRegularizer的实例。
- W_constraint:权值约束,必须传入一个constraints的实例。
- b_constraint:偏置约束,必须传入一个constraints的实例。
- input_dim:输入数据的维度。这个参数会在模型的第一层中用到。
千行代码,Bug何处藏。 纵使上线又怎样,朝令改,夕断肠。
分类:
Python开发笔记
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 一个奇形怪状的面试题:Bean中的CHM要不要加volatile?
· [.NET]调用本地 Deepseek 模型
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· 在鹅厂做java开发是什么体验
· 百万级群聊的设计实践
· WPF到Web的无缝过渡:英雄联盟客户端的OpenSilver迁移实战
· 永远不要相信用户的输入:从 SQL 注入攻防看输入验证的重要性
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析