「NOIP第四阶段」整理

模拟赛45

考试时犯困,T3暴力都没打

T1: bins

一眼沙雕题,指针+桶扫一遍就行了

T2:inversions

归并没学两行泪

由于没学归并,考场就没往正解上想

考虑一个区间翻转对其它区间的影响

  • 对本级及含于本级的区间,逆序对个数与正序对个数交换

  • 对于同级其他及本级以上,当前区间没影响

所以直接用归并统计出每一级区间的正逆序对个数,修改时打标记即可



#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rint register int
#define ll long long
#define ull unsigned long long
#define Max(a,b) (a>b?a:b)
using namespace std;
const int maxn=1e6+5e5+5,INF=0x3f3f3f3f;
inline int read(){
	int s=0,w=1;
	char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
	while(ch>='0'&&ch<='9')s=s*10+ch-'0',ch=getchar();
	return s*w;
}
ull k1,k2;
int a[maxn],q[maxn],flag;
inline ull xorShift128Plus(){
	ull k3=k1,k4=k2;
	k1=k4;
	k3^=(k3<<23);
	k2=k3^k4^(k3>>17)^(k4>>26);
	return k2+k4;
}
int n,m,threshold,b[maxn],c[maxn];
bool vis[maxn];
ll ans,now,f[22],g[22];
#define mid ((l+r)>>1)
void merge_sort(int l,int r){
	if(l==r)return;
	merge_sort(l,mid);merge_sort(mid+1,r);
	int idl=l,idr=mid+1,id=l-1,now=log2(r-l+1);
	while(idl<=mid&&idr<=r){
		if(a[idl]<=a[idr]){
			b[++id]=a[idl];
			idl++;
		}else{
			b[++id]=a[idr];
			if(flag==1)g[now]+=mid-idl+1;
			else f[now]+=mid-idl+1;
			idr++;
		}
	}
	while(idl<=mid)b[++id]=a[idl++];
	while(idr<=r)b[++id]=a[idr++];
	for(id=l;id<=r;++id)a[id]=b[id];
}
signed main(){
	freopen("inversions.in","r",stdin);
	freopen("inversions.out","w",stdout);
	n=read(),m=read(),threshold=read(),cin>>k1>>k2;
	int maxs=1<<n;
	for(rint i=1;i<=maxs;++i)a[i]=xorShift128Plus()%threshold+1;
	for(rint i=1;i<=m;++i)q[i]=xorShift128Plus()%(n+1);
	n=(1<<n);
	memcpy(c,a,sizeof(a));flag=1;
	merge_sort(1,n);
	memcpy(a,c,sizeof(c));flag=2;
	reverse(a+1,a+1+n);
	merge_sort(1,n);
	n=log2(n);
	for(rint i=1;i<=m;++i){
		ll now=0;
		for(rint j=1;j<=n;++j){
			if(j<=q[i])vis[j]^=1;
			if(vis[j])now+=f[j];//,cout<<f[j]<<" ";
			else now+=g[j];//,cout<<g[j]<<" ";
		}
		ans^=(now*i);
	}
	printf("%lld\n",ans);
	return 0;
}

T3:candies

送的50pts没打,awsl

第一问相当于消失之物,考场忘了消失之物咋写硬搞还搞错了

具体点,取 \(q\) 为 正无限,那当前能表示的数就可以翻倍

所以直接消失之物找最多表示

第二问就有。意思了,

对于不合法的 \(q\) ,显然有

\[S + q = T (S,T均为可表示的集合) \]

移项

\[q = T - S \]

发现就是一个权值可正可负的背包,所以再跑一遍背包找出最大不能表示的数

负下标写法是从liu_run_da某篇题解里学的

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rint register int
#define ll long long
#define ull unsigned long long
#define Max(a,b) (a>b?a:b)
using namespace std;
const int maxn=7e5+5,INF=0x3f3f3f3f,mol=1e9+7,base=7e5;
inline int read(){
	int s=0,w=1;
	char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
	while(ch>='0'&&ch<='9')s=s*10+ch-'0',ch=getchar();
	return s*w;
}
int DP[maxn*2],f1[maxn],maxid,ans,a[maxn],n,sum,f3[maxn],sum1[maxn];
int *f2=DP+base;
int main(){
	freopen("candies.in","r",stdin);
	freopen("candies.out","w",stdout);
	n=read();
	for(rint i=1;i<=n;++i)a[i]=read(),sum+=a[i];
	sort(a+1,a+1+n);
	f1[0]=1;
	for(rint i=1;i<=n;++i){
		for(rint j=sum;j>=a[i];--j){
			f1[j]+=f1[j-a[i]];
			if(f1[j]>mol)f1[j]-=mol;
		}
	}
	sum1[0]=1;
	for(rint i=1;i<=sum;++i)sum1[i]=sum1[i-1]+(f1[i]>=1);
	memcpy(f3,f1,sizeof(f1));
	for(rint i=1;i<=n;++i){
		for(rint j=0;j<=sum;++j)f1[j]=f3[j];
		int cnt=sum1[a[i]-1];
		for(rint j=a[i];j<=sum;++j){
			if(f1[j-a[i]]){
				f1[j]-=f1[j-a[i]];
				if(f1[j]<0)f1[j]+=mol;
			}
			if(f1[j])cnt++;
		}
		if(cnt>ans)ans=cnt,maxid=i;
	}
	printf("%d ",a[maxid]);
	f2[0]=1;
	for(rint i=1;i<=n;++i){
		if(i==maxid)continue;
		for(rint j=sum;j>=-sum;--j){
			if(j-a[i]>=-sum)f2[j]|=f2[j-a[i]];
		}
		for(rint j=-sum;j<=sum;++j){
			if(j+a[i]<=sum)f2[j]|=f2[j+a[i]];
		}
	}
	for(rint j=0;j<=sum+a[maxid]+1;++j){
		if(!f2[j]){printf("%d\n",j);break;}
	}
	return 0;
}

T4:sheep

傻逼题给爷爬

晚间小测10

T1:跳跃

前几天刚考过的折半枚举

发现折半后的一个状态合法有两个条件:

  • \(w1 + w2 >= m\)

  • 前一半尾位不大于后一半首位

前一半直接排序,后一半对每一个首位存状态,vector内部按权值排序,再记录一个指针

由于合法状态一定不满,空间最大不会超过64MB

另外没事少开 #define int long long(指某人MLE了)

#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rint register int
#define ll long long
#define Max(a,b) (a>b?a:b)
#define Min(a,b) (a<b?a:b)
const int maxn=1e6+5e5+5,INF=0x3f3f3f3f;
using namespace std;
inline int read(){
	int s=0,w=1;
	char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
	while(ch>='0'&&ch<='9')s=s*10+ch-'0',ch=getchar();
	return s*w;
}
int n,a[45],b[45],id[45],tot,tot1;
ll m,ans;
struct Node{
	int s,x;
	ll w;
	bool operator <(const Node &A)const{
		return w==A.w?x<A.x:w<A.w;
	}
}q1[maxn];
struct Nodee{
	int s,x;
	ll w;
	Nodee(int _s,int _x,ll _w){s=_s,x=_x,w=_w;}
	bool operator <(const Nodee &A)const{
		return w==A.w?x<A.x:w<A.w;
	}
};
vector<Nodee> g[45];
int main(){
	freopen("san.in","r",stdin);
	freopen("san.out","w",stdout);
	n=read();scanf("%lld",&m);
	for(rint i=1;i<=n;++i)a[i]=read(),b[i]=read();
	int siz=n/2,maxs1=(1<<siz)-1,maxs2=(1<<n-siz)-1,now;
	ll sum;
	for(rint s=1;s<=maxs1;++s){
		now=0;sum=0;
		int last=0;
		for(rint i=1;i<=siz;++i){
			if(s&(1<<i-1)){
				if(a[i]<now)goto skr1;
				now=a[i];
				sum+=1LL*b[i];
				last=i;
			}
		}
		if(sum>=m)ans++;
		q1[++tot1]=(Node){s,last,sum};
		skr1:;
	}
	for(rint s=1;s<=maxs2;++s){
		now=0;sum=0;
		int fst=0;
		for(rint i=1;i<=n-siz;++i){
			if(s&(1<<i-1)){
				if(!fst)fst=i;
				if(a[i+siz]<now)goto skr2;
				now=a[i+siz];
				sum+=1LL*b[i+siz];
			}
		}
		if(sum>=m)ans++;
		g[fst].push_back(Nodee(s,fst,sum));
		skr2:;
	}
	sort(q1+1,q1+1+tot1);
	for(rint i=1;i<=n-siz;++i){
		sort(g[i].begin(),g[i].end());
		id[i]=g[i].size();
//		for(rint j=0;j<g[i].size();++j)cout<<i<<" "<<g[i][j].w<<" "<<g[i][j].x<<endl;
	}
	for(rint i=1;i<=tot1;++i){
		for(rint j=1;j<=n-siz;++j){
			if(a[j+siz]<a[q1[i].x]||g[j].empty())continue;
			while(id[j]&&g[j][id[j]-1].w+q1[i].w>=m)id[j]--;
			//cout<<i<<" "<<j<<" "<<id[j]<<" "<<g[j].size()<<" "<<ans<<endl;
			ans+=(int)g[j].size()-id[j];
//				cout<<i<<" "<<q1[i].x<<" "<<g[j][id[j]].w<<" j="<<j<<" "<<id[j]<<" "<<g[j].size()<<" ans="<<ans<<endl;
		}
	}
	printf("%lld\n",ans);
	return 0;
}

T2:床单

考场用最后的五分钟将33pts的代码改成了13pts,原因是:

我理解成:若打到了小床单上,小床单下的大床单即使没为射击点上也会被染色,大床单染色又会下传,然后我就建了个图,无了

正解没写


模拟测试46


考场发现T4欧拉定理可冲,发现模数转欧拉函数后还不是质数,没往CRT上想就走了

两个小时后发现自己T1还没调出来,看到左右做题速度飞快,果断上个坼锁开下一道题

最后一个小时冲T1 \(O(nlogn^2)\)

改完后在更

posted @ 2020-12-03 21:04  _乀aakennes  阅读(105)  评论(0编辑  收藏  举报
levels of contents