理解MapReduce计算构架
1.编写map函数,reduce函数
(1)创建mapper.py文件
cd /home/hadoop/wc
gedit mapper.p
(2)mapper函数
#!/usr/bin/env python import sys for i in stdin: i = i.strip() words = i.split() for word in words: print '%s\t%s' % (word,1)
(3)reducer.py文件创建
cd /home/hadoop/wc
gedit reducer.py
(4)reducer函数
#!/usr/bin/env python from operator import itemgetter import sys current_word = None current_count = 0 word = None for i in stdin: i = i.strip() word, count = i.split('\t',1) try: count = int(count) except ValueError: continue if current_word == word: current_count += count else: if current_word: print '%s\t%s' % (current_word, current_count) current_count = count current_word = word if current_word == word: print '%s\t%s' % (current_word, current_count)
2.将其权限作出相应修改
chmod a+x /home/hadoop/mapper.py
echo "foo foo quux labs foo bar quux" | /home/hadoop/wc/mapper.py
echo "foo foo quux labs foo bar quux" | /home/hadoop/wc/mapper.py | sort -k1,1 | /home/hadoop/wc/reducer.p
3.本机上测试运行代码
放到HDFS上运行
下载并上传文件到hdfs上
cd /home/hadoop/wc wget http://www.gutenberg.org/files/5000/5000-8.txt wget http://www.gutenberg.org/cache/epub/20417/pg20417.txt
cd /usr/hadoop/wc hdfs dfs -put /home/hadoop/hadoop/gutenberg/*.txt /user/hadoop/input