【Python之路】特别篇--RabbitMQ

RabbitMQ

  解释RabbitMQ,就不得不提到AMQP(Advanced Message Queuing Protocol)协议。 AMQP协议是一种基于网络的消息传输协议,它能够在应用或组织之间提供可靠的消息传输。RabbitMQ是该AMQP协议的一种实现,利用它,可以将消息安全可靠的从发 送方传输到接收方。简单的说,就是消息发送方利用RabbitMQ将信息安全的传递给接收方。

     RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统。他遵循Mozilla Public License开源协议。

  MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们。消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过 队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。

 

1.简单队列模型

  基于Queue实现生产者,消费者模型

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import Queue
import threading

message = Queue.Queue(10)

def producer(i):
    while True:
        message.put(i)

def consumer(i):
    while True:
        msg = message.get()

for i in range(12):
    t = threading.Thread(target=producer, args=(i,))
    t.start()

for i in range(10):
    t = threading.Thread(target=consumer, args=(i,))
    t.start()
View Code

  对于RabbitMQ来说,生产和消费不再针对内存里的一个Queue对象,而是某台服务器上的RabbitMQ Server实现的消息队列。

生产者:

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel
= connection.channel() channel.queue_declare(queue='hello') # 创建队列 channel.basic_publish(exchange='', routing_key='hello', body='Hello World!') print(" [x] Sent 'Hello World!'") connection.close()

消费者:

connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel
= connection.channel() channel.queue_declare(queue='hello') # 创建队列 def callback(ch, method, properties, body): print(" [x] Received %r" % body) channel.basic_consume(callback, queue='hello', no_ack=True) print(' [*] Waiting for messages. To exit press CTRL+C') channel.start_consuming()

重要参数介绍:

(1)acknowledgment 消息不丢失

no_ack = True,无应答,如果callback执行中断,数据丢失!

no_ack = False,有应答, callback执行结束,告诉队列,删除原数据!

def callback(ch,method,properties,body):
    print(" [x] Received %r" % body)
    import time
    time.sleep(2)
    print('ok')
    ch.basic_ack(delivery_tag=method.delivery_tag)

channel.basic_consume(callback,queue='s1',no_ack=False)
no_ack = False callback

(2)durable   消息不丢失(数据持久化,保存硬盘)

生产者:

channel.queue_declare(queue='hello', durable=True)

channel.basic_publish(exchange='',
                      routing_key='hello',
                      body='Hello World!',
                      properties=pika.BasicProperties(
                          delivery_mode=2,   # 默认是1 make message persistent
                      ))

消费者:

channel.queue_declare(queue='hello', durable=True)

def callback(ch, method, properties, body):
    print(" [x] Received %r" % body)
    import time
    time.sleep(10)
    print 'ok'
    ch.basic_ack(delivery_tag = method.delivery_tag)

(3)消息获取顺序

默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者2去队列中获取 偶数 序列的任务。

channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列,(谁先做完,就发给谁)

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel()

# make message persistent
channel.queue_declare(queue='hello')


def callback(ch, method, properties, body):
    print(" [x] Received %r" % body)
    import time
    time.sleep(10)
    print 'ok'
    ch.basic_ack(delivery_tag = method.delivery_tag)

channel.basic_qos(prefetch_count=1)

channel.basic_consume(callback,
                      queue='hello',
                      no_ack=False)

print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()
View Code

2.exchange工作模型(fanout,direct,topic)

2.1 发布订阅

  发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。

  所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。

  exchange type = fanout

发布者:

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='logs',    
                         type='fanout')       #创建交换机,指定名称,工作模式   

message = "info: Hello World!"
channel.basic_publish(exchange='logs',
                      routing_key='',
                      body=message)
print(" [x] Sent %r" % message)
connection.close()

订阅者:

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='logs',
                         type='fanout')

result = channel.queue_declare(exclusive=True)        #不指定queue名字,rabbit会随机分配一个名字,exclusive=True会在使用此queue的消费者断开后,自动将queue删除
queue_name = result.method.queue

channel.queue_bind(exchange='logs',
                   queue=queue_name)           # 队列绑定交换机

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):
    print(" [x] %r" % body)

channel.basic_consume(callback,
                      queue=queue_name,
                      no_ack=True)

channel.start_consuming()

2.2 关键字发送

  exchange type = direct

  之前事例,发送消息时明确指定某个队列并向其中发送消息,RabbitMQ还支持根据关键字发送,

  即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。

生产者:

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='direct_logs',
                         type='direct')

severity = 'info'
message =  'Hello World!'
channel.basic_publish(exchange='direct_logs',
                      routing_key=severity,
                      body=message)
print(" [x] Sent %r:%r" % (severity, message)) connection.close()

消费者:

import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='direct_logs',type='direct')

result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

severities = sys.argv[1:]
if not severities:
    sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
    sys.exit(1)

# 绑定多个关键字
for severity in severities:                         
    channel.queue_bind(exchange='direct_logs',
                       queue=queue_name,
                       routing_key=severity)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):
    print(" [x] %r:%r" % (method.routing_key, body))

channel.basic_consume(callback,
                      queue=queue_name,
                      no_ack=True)

channel.start_consuming()

2.3 模糊匹配

  exchange type = topic

  在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。

  • # 表示可以匹配 0 个 或 多个 单词

  • *  表示只能匹配 一个 单词

发送者路由值              队列中
old.boy.python          old.*  -- 不匹配
old.boy.python          old.#  -- 匹配

生产者:

import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='topic_logs',type='topic')

routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'

channel.basic_publish(exchange='topic_logs',
                      routing_key=routing_key,
                      body=message)
print(" [x] Sent %r:%r" % (routing_key, message))
connection.close()

消费者:

import pika,sys

connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='topic_logs',type='topic')

result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

binding_keys = sys.argv[1:]
if not binding_keys:
    sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])
    sys.exit(1)

for binding_key in binding_keys:
    channel.queue_bind(exchange='topic_logs',
                       queue=queue_name,
                       routing_key=binding_key)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):
    print(" [x] %r:%r" % (method.routing_key, body))

channel.basic_consume(callback,
                      queue=queue_name,
                      no_ack=True)

channel.start_consuming()
 

 

Remote procedure call (RPC)

#!/usr/bin/env python
# -*-coding:utf-8 -*-

import pika
import subprocess

credentials = pika.PlainCredentials('firefly','123456')
connection = pika.BlockingConnection(pika.ConnectionParameters(
    host = '192.168.18.147',
    credentials=credentials
))
channel = connection.channel()

channel.queue_declare(queue='rpc_queue')

def on_request(ch,method,props,body):
    cmd = str(body,encoding='utf-8')

    cmd_obj = subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE,stderr=subprocess.PIPE)
    response = cmd_obj.stdout.read() + cmd_obj.stderr.read()

    ch.basic_publish(exchange='',
                     routing_key=props.reply_to,
                     properties=pika.BasicProperties(correlation_id=props.correlation_id),
                     body=response)

    ch.basic_ack(delivery_tag=method.delivery_tag)

channel.basic_qos(prefetch_count=1)
channel.basic_consume(on_request, queue='rpc_queue')

print(" [x] Awaiting RPC requests")
channel.start_consuming()
client
#!/usr/bin/env python
# -*-coding:utf-8 -*-

import pika
import uuid

class RPCServer(object):

    def __init__(self):

        self.credentials = pika.PlainCredentials('firefly','123456')
        self.connection = pika.BlockingConnection(pika.ConnectionParameters(
            host = '192.168.18.147',
            credentials=self.credentials
        ))
        self.channel = self.connection.channel()

        result = self.channel.queue_declare(exclusive=True)
        self.callback_queue = result.method.queue

        self.channel.basic_consume(self.on_response,no_ack=True,queue=self.callback_queue)

    def on_response(self, ch, method, props, body):
        if self.corr_id == props.correlation_id:
            self.response = body


    def call(self,inp):
        self.response = None
        self.corr_id = str(uuid.uuid4())

        self.channel.basic_publish(exchange='',
                                   routing_key='rpc_queue',
                                   properties=pika.BasicProperties(
                                       reply_to=self.callback_queue,
                                       correlation_id=self.corr_id,
                                   ),
                                   body=inp)
        while self.response is None:
            self.connection.process_data_events()
        return self.response

rep_server = RPCServer()

print('Waiting Replay')
response = rep_server.call('ipconfig')
print(response.decode('gbk'))
server

 

posted @ 2017-03-20 14:45  5_FireFly  阅读(276)  评论(0编辑  收藏  举报
web
counter