算法学习【第七篇】:算法之迷宫问题
题目:给一个二维列表,表示迷宫(0表示通道,1表示围墙)。给出算法,求一条走出迷宫的路径#
1 2 3 4 5 6 7 8 9 10 11 12 | maze = [ [1,1,1,1,1,1,1,1,1,1], [1,0,0,1,0,0,0,1,0,1], [1,0,0,1,0,0,0,1,0,1], [1,0,0,0,0,1,1,0,0,1], [1,0,1,1,1,0,0,0,0,1], [1,0,0,0,1,0,0,0,0,1], [1,0,1,0,0,0,1,0,0,1], [1,0,1,1,1,0,1,1,0,1], [1,1,0,0,0,0,0,0,0,1], [1,1,1,1,1,1,1,1,1,1] ] |
解决思路:
- 在一个迷宫节点(x,y)上,可以进行四个方向的探查:maze[x-1][y], maze[x+1][y], maze[x][y-1], maze[x][y+1]
- 思路:从一个节点开始,任意找下一个能走的点,当找不到能走的点时,退回上一个点寻找是否有其他方向的点。
- 方法:创建一个空栈,首先将入口位置进栈。当栈不空时循环:获取栈顶元素,寻找下一个可走的相邻方块,如果找不到可走的相邻方块,说明当前位置是死胡同,进行回溯(就是讲当前位置出栈,看前面的点是否还有别的出路)
用栈实现#
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | maze = [ [1,1,1,1,1,1,1,1,1,1], [1,0,0,1,0,0,0,1,0,1], [1,0,0,1,0,0,0,1,0,1], [1,0,0,0,0,1,1,0,0,1], [1,0,1,1,1,0,0,0,0,1], [1,0,0,0,1,0,0,0,0,1], [1,0,1,0,0,0,1,0,0,1], [1,0,1,1,1,0,1,1,0,1], [1,1,0,0,0,0,0,0,0,1], [1,1,1,1,1,1,1,1,1,1] ] dirs = [ lambda x,y:(x-1,y), #上 lambda x,y:(x,y+1), #右 lambda x,y:(x+1,y), #下 lambda x,y:(x,y-1), #左 ] def solve_maze(x1, y1, x2, y2): stack = [] stack.append((x1,y1)) maze[x1][y1] = 2 while len(stack) > 0: # 当栈不空循环 cur_node = stack[-1] if cur_node == (x2,y2): #到达终点 for p in stack: print(p) return True for dir in dirs: next_node = dir(*cur_node) if maze[next_node[0]][next_node[1]] == 0: #找到一个能走的方向 stack.append(next_node) maze[next_node[0]][next_node[1]] = 2 # 2表示已经走过的点 break else: #如果一个方向也找不到 stack.pop() else: print("无路可走") return False |
用队列实现#
解决思路:
- 思路:从一个节点开始,寻找所有下面能继续走的点。继续寻找,直到找到出口。
- 方法:创建一个空队列,将起点位置进队。在队列不为空时循环:出队一次。如果当前位置为出口,则结束算法;否则找出当前方块的4个相邻方块中可走的方块,全部进队。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | from collections import deque maze = [ [1,1,1,1,1,1,1,1,1,1], [1,0,0,1,0,0,0,1,0,1], [1,0,0,1,0,0,0,1,0,1], [1,0,0,0,0,1,1,0,0,1], [1,0,1,1,1,0,0,0,0,1], [1,0,0,0,1,0,0,0,0,1], [1,0,1,0,0,0,1,0,0,1], [1,0,1,1,1,0,1,1,0,1], [1,1,0,0,0,0,0,0,0,1], [1,1,1,1,1,1,1,1,1,1] ] def solve_maze2(x1,y1,x2,y2): queue = deque() path = [] # 记录出队之后的节点 queue.append((x1,y1,-1)) maze[x1][y1] = 2 while len(queue) > 0: cur_node = queue.popleft() path.append(cur_node) if cur_node[0] == x2 and cur_node[1] == y2: #到终点 real_path = [] x,y,i = path[-1] real_path.append((x,y)) while i >= 0: node = path[i] real_path.append(node[0:2]) i = node[2] real_path.reverse() for p in real_path: print(p) return True for dir in dirs: next_node = dir(cur_node[0], cur_node[1]) if maze[next_node[0]][next_node[1]] == 0: queue.append((next_node[0], next_node[1], len(path)-1)) maze[next_node[0]][next_node[1]] = 2 # 标记为已经走过 else: print("无路可走") return False solve_maze2(1,1,8,8) |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 周边上新:园子的第一款马克杯温暖上架