1004 Counting Leaves (30 分)

A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 0, the number of nodes in a tree, and M (<), the number of non-leaf nodes. Then M lines follow, each in the format:

ID K ID[1] ID[2] ... ID[K]

where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 01.

The input ends with N being 0. That case must NOT be processed.

Output Specification:

For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.

The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1 leaf node. Then we should output 0 1 in a line.

Sample Input:

2 1
01 1 02

Sample Output:

0 1

题目分析 :第一行给了你2个数字,一个代表的是总节点数,一个代表的是叶子节点数 之后的几行 父亲节点与子节点,要求算出每一层叶子节点的数量
参考了别人的答案https://blog.csdn.net/qq_37613112/article/details/90577948
就是先将所有节点都先录入,然后对所有节点遍历,当它父亲节点的层数确定好后,它自己的层数也就能确定了
 1 #include<iostream>
 2 #include<string>
 3 #include<stdlib.h>
 4 #include<vector>
 5 #define MaxNum 101
 6 using namespace std;
 7 typedef struct Node
 8 {
 9     int child = 0;
10     int level = -1;
11     int father;
12 }Tree[MaxNum];
13 
14 int main()
15 {
16     Tree tree;
17     int n, m;
18     cin >> n>> m;
19     for (int k = 0; k < m; k++)
20     {
21         int id,c,idj;
22         cin >> id >> c;
23         for (int j = 0; j < c; j++)
24         {
25             cin >> idj;
26             tree[id].child++;
27             tree[idj].father = id;
28         }
29     }
30     tree[1].father = 1;
31     tree[1].level = 0;
32     if (n == 1)
33     {
34         cout << "1" << endl;
35         return 0;
36     }
37     int flag = 1;
38     while (flag)
39     {
40         flag = 0;
41         for (int i = 1; i <=n; i++)
42         {
43             if (tree[tree[i].father].level != -1 && tree[i].level == -1)tree[i].level = tree[tree[i].father].level + 1;
44             else if (tree[tree[i].father].level == -1)
45                 flag = 1;
46         }
47     }
48     int Level[MaxNum] = { 0 };
49     int MaxLevel = -1;
50     for (int i =1; i <=n; i++)
51     {
52         if (tree[i].child== 0)Level[tree[i].level]++;
53         MaxLevel = MaxLevel > tree[i].level ? MaxLevel : tree[i].level;
54     }
55     cout << Level[0];
56     for (int i = 1; i <= MaxLevel; i++)
57         cout << " " << Level[i];
58     return 0;
59 }
View Code

 

posted @ 2019-11-14 16:35  57one  阅读(148)  评论(0编辑  收藏  举报