后RCNN时代的物体检测及实例分割进展
https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650736740&idx=3&sn=cdce446703e69b47cf48f12b3d451afc&chksm=871acc1ab06d450ccde3148df96436c98adb2de3b6a34559b95af322c5186513460329dc20bd&pass_ticket=fRFENbG47o6E12opTV0zxlHKhCFDxvRrZMSQpTw%2BcZ9h0Z38WqvICgwk5ynPYCBm#rd后RCNN时代的物体检测及实例分割进展
def conv3x3(in_channels, out_channels, stride=1): return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(ResidualBlock, self).__init__() self.conv1 = conv3x3(in_channels, out_channels, stride) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(out_channels, out_channels, stride) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample: residual = self.downsample(residual) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=10): super(ResNet, self).__init__() self.in_channels = 16 self.conv = conv3x3(1, 16) self.bn = nn.BatchNorm2d(16) #self.relu = nn.Relu(inplace=True) self.relu = nn.ReLU(inplace=True) self.layers1 = self.make_layers(block, 16, layers[0]) self.layers2 = self.make_layers(block, 32, layers[1]) self.layers3 = self.make_layers(block, 64, layers[2]) self.avg_pool = nn.AvgPool2d(8) self.fc = nn.Linear(64, num_classes) def make_layers(self, block, out_channels, blocks, stride=1): downsample = None if(stride!=1) or (self.in_channels != out_channels): downsample = nn.Sequential(conv3x3(self.in_channels, out_channels, stride = stride), nn.BatchNorm2d(out_channels)) layers = [] layers.append(block(self.in_channels, out_channels, stride, downsample)) self.in_channels = out_channels for i in range(blocks): layers.append(block(self.in_channels, out_channels, stride, downsample)) return nn.Sequential(*layers) def forward(self, x): out = self.conv(x) out = self.bn(out) out = self.relu(out) out = self.layers1(out) out = self.layers2(out) out = self.layers3(out) out = self.avg_pool(out) out = self.fc(out) return out resnet = ResNet(ResidualBlock, layers=[2, 2, 2, 2])