rcnn学习(六):imdb.py学习
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
import os
import os.path as osp
import PIL
from utils.cython_bbox import bbox_overlaps
import numpy as np
import scipy.sparse
from fast_rcnn.config import cfg
class imdb(object):
"""Image database."""
def __init__(self, name):
self._name = name
self._num_classes = 0#<span style="font-family: Arial, Helvetica, sans-serif;">类别的长度</span>
self._classes = []#<span style="font-family: Arial, Helvetica, sans-serif;">类别定义</span>
self._image_index = []#<span style="font-family: Arial, Helvetica, sans-serif;">a list of image name(read from eg:</span><span style="font-family: Arial, Helvetica, sans-serif;">root/data + /VOCdevkit2007/VOC2007/ImageSets/Main/{image_set}.txt)</span><span style="font-family: Arial, Helvetica, sans-serif;">
</span> self._obj_proposer = 'selective_search'
self._roidb = None#gt_roidb(cfg.TRAIN.PROPOSAL_METHOD=gt导致了此操作)
self._roidb_handler = self.default_roidb
# Use this dict for storing dataset specific config options
self.config = {}
@property
def name(self):
return self._name
@property
def num_classes(self):
return len(self._classes)
@property
def classes(self):
return self._classes
@property
def image_index(self):
return self._image_index
@property
def roidb_handler(self):
return self._roidb_handler
@roidb_handler.setter
def roidb_handler(self, val):
self._roidb_handler = val
def set_proposal_method(self, method):
method = eval('self.' + method + '_roidb')
self.roidb_handler = method
@property
def roidb(self):
# A roidb is a list of dictionaries, each with the following keys:
# boxes rodib为字典,包括这四个key
# gt_overlaps
# gt_classes
# flipped
if self._roidb is not None:
return self._roidb
self._roidb = self.roidb_handler()
return self._roidb
@property
def cache_path(self):
cache_path = osp.abspath(osp.join(cfg.DATA_DIR, 'cache'))
if not os.path.exists(cache_path):
os.makedirs(cache_path)
return cache_path
@property
def num_images(self):
return len(self.image_index)
def image_path_at(self, i):
raise NotImplementedError
def default_roidb(self):
raise NotImplementedError
def evaluate_detections(self, all_boxes, output_dir=None):
"""
all_boxes is a list of length number-of-classes.
Each list element is a list of length number-of-images.
Each of those list elements is either an empty list []
or a numpy array of detection.
all_boxes[class][image] = [] or np.array of shape #dets x 5
"""
raise NotImplementedError
def _get_widths(self):
return [PIL.Image.open(self.image_path_at(i)).size[0]
for i in xrange(self.num_images)]
def append_flipped_images(self): #为了扩充数据库,对roi进行翻转
num_images = self.num_images
widths = self._get_widths()
for i in xrange(num_images):
boxes = self.roidb[i]['boxes'].copy()
oldx1 = boxes[:, 0].copy()
oldx2 = boxes[:, 2].copy()
boxes[:, 0] = widths[i] - oldx2 - 1
boxes[:, 2] = widths[i] - oldx1 - 1
assert (boxes[:, 2] >= boxes[:, 0]).all()
entry = {'boxes' : boxes,
'gt_overlaps' : self.roidb[i]['gt_overlaps'],
'gt_classes' : self.roidb[i]['gt_classes'],
'flipped' : True}
self.roidb.append(entry)
self._image_index = self._image_index * 2
def evaluate_recall(self, candidate_boxes=None, thresholds=None,
area='all', limit=None):
"""Evaluate detection proposal recall metrics.
Returns: #返回结果
results: dictionary of results with keys
'ar': average recall
'recalls': vector recalls at each IoU overlap threshold
'thresholds': vector of IoU overlap thresholds
'gt_overlaps': vector of all ground-truth overlaps
"""
# Record max overlap value for each gt box
# Return vector of overlap values 对于每个gt,记录max overlap并返回overlap向量值
areas = { 'all': 0, 'small': 1, 'medium': 2, 'large': 3,
'96-128': 4, '128-256': 5, '256-512': 6, '512-inf': 7}
area_ranges = [ [0**2, 1e5**2], # all
[0**2, 32**2], # small
[32**2, 96**2], # medium
[96**2, 1e5**2], # large
[96**2, 128**2], # 96-128
[128**2, 256**2], # 128-256
[256**2, 512**2], # 256-512
[512**2, 1e5**2], # 512-inf
]
assert areas.has_key(area), 'unknown area range: {}'.format(area)
area_range = area_ranges[areas[area]]
gt_overlaps = np.zeros(0)
num_pos = 0
for i in xrange(self.num_images):
# Checking for max_overlaps == 1 avoids including crowd annotations
# (...pretty hacking :/)
max_gt_overlaps = self.roidb[i]['gt_overlaps'].toarray().max(axis=1)
gt_inds = np.where((self.roidb[i]['gt_classes'] > 0) &
(max_gt_overlaps == 1))[0]
gt_boxes = self.roidb[i]['boxes'][gt_inds, :]
gt_areas = self.roidb[i]['seg_areas'][gt_inds]
valid_gt_inds = np.where((gt_areas >= area_range[0]) &
(gt_areas <= area_range[1]))[0]
gt_boxes = gt_boxes[valid_gt_inds, :]
num_pos += len(valid_gt_inds) #统计正样本的个数
if candidate_boxes is None:
# If candidate_boxes is not supplied, the default is to use the
# non-ground-truth boxes from this roidb
non_gt_inds = np.where(self.roidb[i]['gt_classes'] == 0)[0]
boxes = self.roidb[i]['boxes'][non_gt_inds, :]
else:
boxes = candidate_boxes[i]
if boxes.shape[0] == 0:
continue
if limit is not None and boxes.shape[0] > limit:
boxes = boxes[:limit, :]
overlaps = bbox_overlaps(boxes.astype(np.float),
gt_boxes.astype(np.float))
_gt_overlaps = np.zeros((gt_boxes.shape[0]))
for j in xrange(gt_boxes.shape[0]):
# find which proposal box maximally covers each gt box
argmax_overlaps = overlaps.argmax(axis=0)
# and get the iou amount of coverage for each gt box
max_overlaps = overlaps.max(axis=0)
# find which gt box is 'best' covered (i.e. 'best' = most iou)
gt_ind = max_overlaps.argmax()
gt_ovr = max_overlaps.max()
assert(gt_ovr >= 0)
# find the proposal box that covers the best covered gt box
box_ind = argmax_overlaps[gt_ind]
# record the iou coverage of this gt box
_gt_overlaps[j] = overlaps[box_ind, gt_ind]
assert(_gt_overlaps[j] == gt_ovr)
# mark the proposal box and the gt box as used
overlaps[box_ind, :] = -1
overlaps[:, gt_ind] = -1
# append recorded iou coverage level
gt_overlaps = np.hstack((gt_overlaps, _gt_overlaps))
gt_overlaps = np.sort(gt_overlaps)
if thresholds is None:
step = 0.05
thresholds = np.arange(0.5, 0.95 + 1e-5, step)
recalls = np.zeros_like(thresholds)
# compute recall for each iou threshold
for i, t in enumerate(thresholds):
recalls[i] = (gt_overlaps >= t).sum() / float(num_pos)
# ar = 2 * np.trapz(recalls, thresholds)
ar = recalls.mean()
return {'ar': ar, 'recalls': recalls, 'thresholds': thresholds,
'gt_overlaps': gt_overlaps}
#由box的相关信息创建相应的roidb
def create_roidb_from_box_list(self, box_list, gt_roidb):
assert len(box_list) == self.num_images, \
'Number of boxes must match number of ground-truth images'
roidb = []
for i in xrange(self.num_images):
boxes = box_list[i]
num_boxes = boxes.shape[0]
overlaps = np.zeros((num_boxes, self.num_classes), dtype=np.float32)
if gt_roidb is not None and gt_roidb[i]['boxes'].size > 0:
gt_boxes = gt_roidb[i]['boxes']
gt_classes = gt_roidb[i]['gt_classes']
gt_overlaps = bbox_overlaps(boxes.astype(np.float),
gt_boxes.astype(np.float))
argmaxes = gt_overlaps.argmax(axis=1)
maxes = gt_overlaps.max(axis=1)
I = np.where(maxes > 0)[0]
overlaps[I, gt_classes[argmaxes[I]]] = maxes[I]
overlaps = scipy.sparse.csr_matrix(overlaps)
roidb.append({
'boxes' : boxes,
'gt_classes' : np.zeros((num_boxes,), dtype=np.int32),
'gt_overlaps' : overlaps,
'flipped' : False,
'seg_areas' : np.zeros((num_boxes,), dtype=np.float32),
})
return roidb
@staticmethod #把两个roidb组合成一个
def merge_roidbs(a, b):
assert len(a) == len(b)
for i in xrange(len(a)):
a[i]['boxes'] = np.vstack((a[i]['boxes'], b[i]['boxes']))
a[i]['gt_classes'] = np.hstack((a[i]['gt_classes'],
b[i]['gt_classes']))
a[i]['gt_overlaps'] = scipy.sparse.vstack([a[i]['gt_overlaps'],
b[i]['gt_overlaps']])
a[i]['seg_areas'] = np.hstack((a[i]['seg_areas'],
b[i]['seg_areas']))
return a
def competition_mode(self, on):
"""Turn competition mode on or off."""
pass
定义了类imdb及相关操作,包括由box生成相应的roidb、翻转roidb、对相应roidb的recall评估、合并两个roidb。