High-Speed Tracking with Kernelized Correlation Filters(二)

              首先看看get_features函数。

            首先判断是hog特征还是gray,分两种情况。

            如果是hog特征,调用fhog函数,返回x,并将矩阵x的第三维最后一个组数据删除(好奇fhog函数http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html)。

            

1 if features.hog,
2         %HOG features, from Piotr's Toolbox
3         x = double(fhog(single(im) / 255, cell_size, features.hog_orientations));
4         x(:,:,end) = [];  %remove all-zeros channel ("truncation feature")
5                           %将矩阵x的第三维最后一个组数据删除
6     end

 

            如果是gray,则直接对其归一化处理。

             

if features.gray,
        %gray-level (scalar feature)
        x = double(im) / 255;
        
        x = x - mean(x(:));
    end

           函数最后返回x            

 

        下面分析下各个核的correlation。

        首先是gaussian核,计算跟CSK没什么两样:

        

 1 N = size(xf,1) * size(xf,2);
 2     xx = xf(:)' * xf(:) / N;  %squared norm of x
 3     yy = yf(:)' * yf(:) / N;  %squared norm of y
 4     
 5     %cross-correlation term in Fourier domain
 6     xyf = xf .* conj(yf);
 7     xy = sum(real(ifft2(xyf)), 3);  %to spatial domain
 8     
 9     %calculate gaussian response for all positions, then go back to the
10     %Fourier domain
11     kf = fft2(exp(-1 / sigma^2 * max(0, (xx + yy - 2 * xy) / numel(xf))));

 

        

   对于linear kernel

kf = sum(xf .* conj(yf), 3) / numel(xf);

 

 

    对于polynomial kernel

 

1      xyf = xf .* conj(yf);
2     xy = sum(real(ifft2(xyf)), 3);  %to spatial domain
3     
4     %calculate polynomial response for all positions, then go back to the
5     %Fourier domain
6     kf = fft2((xy / numel(xf) + a) .^ b);

 

        

posted @ 2015-09-19 08:30  牧马人夏峥  阅读(563)  评论(0编辑  收藏  举报