最简单的目标跟踪-模板匹配跟踪(转)
转自:http://blog.csdn.net/huixingshao/article/details/43636717
模板匹配TemplateMatching是在图像中寻找目标的方法之一。原理很简单,就是在一幅图像中寻找和模板图像(patch)最相似的区域。在OpenCV中有对应的函数可以调用:
void matchTemplate( const Mat& image, const Mat& templ, Mat&result, int method );
该函数的功能为,在输入源图像Sourceimage(I)中滑动框,寻找各个位置与模板图像Template image(T)的相似度,并将结果保存在结果矩阵result matrix(R)中。该矩阵的每一个点的亮度表示与模板T的匹配程度。然后可以通过函数minMaxLoc定位矩阵R中的最大值(该函数也可以确定最小值)。那通过什么去评价两个图像相似呢?这就存在一个评价准则,也就是参数method,它可以有以下值(匹配的方法):
CV_TM_SQDIFF 平方差匹配法,最好的匹配为0,值越大匹配越差;
CV_TM_SQDIFF_NORMED 归一化平方差匹配法;
CV_TM_CCORR 相关匹配法,采用乘法操作,数值越大表明匹配越好;
CV_TM_CCORR_NORMED 归一化相关匹配法;
CV_TM_CCOEFF 相关系数匹配法,最好的匹配为1,-1表示最差的匹配;
CV_TM_CCOEFF_NORMED 归一化相关系数匹配法;
前面两种方法为越小的值表示越匹配,后四种方法值越大越匹配。
其中:
CV_TM_SQDIFF为:Sumof Squared Difference (SSD) 差值的平方和:
CV_TM_CCORR 为:Cross Correlation互相关:
SSD可以看成是欧式距离的平方。我们把SSD展开,可以得到:
可以看到,上式的第一项(模板图像T的能量)是一个常数,第三项(图像I局部的能量)也可以近似一个常数,那么可以看到,剩下的第二项就是和cross correlation一样的,也就是互相关项。而SSD是数值越大,相似度越小,cross correlation是数值越大,相似度越大。
参考:
Konstantinos G. Derpanis 等《RelationshipBetween the Sum of Squared Difference (SSD) and Cross Correlation for TemplateMatching》
实现:
simpleTracker.cpp // Object tracking algorithm using matchTemplate #include <opencv2/opencv.hpp> using namespace cv; using namespace std; // Global variables Rect box; bool drawing_box = false; bool gotBB = false; // bounding box mouse callback void mouseHandler(int event, int x, int y, int flags, void *param){ switch( event ){ case CV_EVENT_MOUSEMOVE: if (drawing_box){ box.width = x-box.x; box.height = y-box.y; } break; case CV_EVENT_LBUTTONDOWN: drawing_box = true; box = Rect( x, y, 0, 0 ); break; case CV_EVENT_LBUTTONUP: drawing_box = false; if( box.width < 0 ){ box.x += box.width; box.width *= -1; } if( box.height < 0 ){ box.y += box.height; box.height *= -1; } gotBB = true; break; } } // tracker: get search patches around the last tracking box, // and find the most similar one void tracking(Mat frame, Mat &model, Rect &trackBox) { Mat gray; cvtColor(frame, gray, CV_RGB2GRAY); Rect searchWindow; searchWindow.width = trackBox.width * 3; searchWindow.height = trackBox.height * 3; searchWindow.x = trackBox.x + trackBox.width * 0.5 - searchWindow.width * 0.5; searchWindow.y = trackBox.y + trackBox.height * 0.5 - searchWindow.height * 0.5; searchWindow &= Rect(0, 0, frame.cols, frame.rows); Mat similarity; matchTemplate(gray(searchWindow), model, similarity, CV_TM_CCOEFF_NORMED); double mag_r; Point point; minMaxLoc(similarity, 0, &mag_r, 0, &point); trackBox.x = point.x + searchWindow.x; trackBox.y = point.y + searchWindow.y; model = gray(trackBox); } int main(int argc, char * argv[]) { VideoCapture capture; capture.open("david.mpg"); bool fromfile = true; //Init camera if (!capture.isOpened()) { cout << "capture device failed to open!" << endl; return -1; } //Register mouse callback to draw the bounding box cvNamedWindow("Tracker", CV_WINDOW_AUTOSIZE); cvSetMouseCallback("Tracker", mouseHandler, NULL ); Mat frame, model; capture >> frame; while(!gotBB) { if (!fromfile) capture >> frame; imshow("Tracker", frame); if (cvWaitKey(20) == 'q') return 1; } //Remove callback cvSetMouseCallback("Tracker", NULL, NULL ); Mat gray; cvtColor(frame, gray, CV_RGB2GRAY); model = gray(box); int frameCount = 0; while (1) { capture >> frame; if (frame.empty()) return -1; double t = (double)cvGetTickCount(); frameCount++; // tracking tracking(frame, model, box); // show stringstream buf; buf << frameCount; string num = buf.str(); putText(frame, num, Point(20, 20), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 3); rectangle(frame, box, Scalar(0, 0, 255), 3); imshow("Tracker", frame); t = (double)cvGetTickCount() - t; cout << "cost time: " << t / ((double)cvGetTickFrequency()*1000.) << endl; if ( cvWaitKey(1) == 27 ) break; } return 0; }