41.位运算
所谓位运算,就是对一个比特(Bit)位进行操作。比特(Bit)是一个电子元器件,8个比特构成一个字节(Byte),它已经是粒度最小的可操作单元了。
C语言提供了六种位运算符:
运算符 | & | | | ^ | ~ | << | >> |
---|---|---|---|---|---|---|
说明 | 按位与 | 按位或 | 按位异或 | 取反 | 左移 | 右移 |
一、按位与运算(&)
一个比特(Bit)位只有 0 和 1 两个取值,只有参与&
运算的两个位都为 1 时,结果才为 1,否则为 0。例如1&1
为 1,0&0
为 0,1&0
也为 0,这和逻辑运算符&&
非常类似。
C语言中不能直接使用二进制,&
两边的操作数可以是十进制、八进制、十六进制,它们在内存中最终都是以二进制形式存储,&
就是对这些内存中的二进制位进行运算。其他的位运算符也是相同的道理。
例如,9 & 5
可以转换成如下的运算:
0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001 (9 在内存中的存储)
& 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101 (5 在内存中的存储)
-----------------------------------------------------------------------------------
0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0001 (1 在内存中的存储)
也就是说,按位与运算会对参与运算的两个数的所有二进制位进行&
运算,9 & 5
的结果为 1。
又如,-9 & 5
可以转换成如下的运算:
1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)
& 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101 (5 在内存中的存储)
-----------------------------------------------------------------------------------
0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101 (5 在内存中的存储)
-9 & 5
的结果是 5。
再强调一遍,&
是根据内存中的二进制位进行运算的,而不是数据的二进制形式;其他位运算符也一样。以-9&5
为例,-9 的在内存中的存储和 -9 的二进制形式截然不同:
1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)
-0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001 (-9 的二进制形式,前面多余的 0 可以抹掉)
按位与运算通常用来对某些位清 0,或者保留某些位。例如要把 n 的高 16 位清 0 ,保留低 16 位,可以进行n & 0XFFFF
运算(0XFFFF 在内存中的存储形式为 0000 0000 -- 0000 0000 -- 1111 1111 -- 1111 1111)。
【实例】对上面的分析进行检验。
#include <stdio.h>
int main(){
int n = 0X8FA6002D;
printf("%d, %d, %X\n", 9 & 5, -9 & 5, n & 0XFFFF);
return 0;
}
运行结果:
1, 5, 2D
二、按位或运算(|)
参与|
运算的两个二进制位有一个为 1 时,结果就为 1,两个都为 0 时结果才为 0。例如1|1
为1,0|0
为0,1|0
为1,这和逻辑运算中的||
非常类似。
例如,9 | 5
可以转换成如下的运算:
0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001 (9 在内存中的存储)
| 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101 (5 在内存中的存储)
-----------------------------------------------------------------------------------
0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1101 (13 在内存中的存储)
9 | 5
的结果为 13。
又如,-9 | 5
可以转换成如下的运算:
1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)
| 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101 (5 在内存中的存储)
-----------------------------------------------------------------------------------
1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)
-9 | 5
的结果是 -9。
按位或运算可以用来将某些位置 1,或者保留某些位。例如要把 n 的高 16 位置 1,保留低 16 位,可以进行n | 0XFFFF0000
运算(0XFFFF0000 在内存中的存储形式为 1111 1111 -- 1111 1111 -- 0000 0000 -- 0000 0000)。
【实例】对上面的分析进行校验。
#include <stdio.h>
int main(){
int n = 0X2D;
printf("%d, %d, %X\n", 9 | 5, -9 | 5, n | 0XFFFF0000);
return 0;
}
运行结果:
13, -9, FFFF002D
三、按位异或运算(^)
参与^
运算两个二进制位不同时,结果为 1,相同时结果为 0。例如0^1
为1,0^0
为0,1^1
为0。
例如,9 ^ 5
可以转换成如下的运算:
0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001 (9 在内存中的存储)
^ 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101 (5 在内存中的存储)
-----------------------------------------------------------------------------------
0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1100 (12 在内存中的存储)
9 ^ 5
的结果为 12。
又如,-9 ^ 5
可以转换成如下的运算:
1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)
^ 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0101 (5 在内存中的存储)
-----------------------------------------------------------------------------------
1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0010 (-14 在内存中的存储)
-9 ^ 5
的结果是 -14。
按位异或运算可以用来将某些二进制位反转。例如要把 n 的高 16 位反转,保留低 16 位,可以进行n ^ 0XFFFF0000运算(0XFFFF0000 在内存中的存储形式为 1111 1111 -- 1111 1111 -- 0000 0000 -- 0000 0000)。
【实例】对上面的分析进行校验。
#include <stdio.h>
int main(){
unsigned n = 0X0A07002D;
printf("%d, %d, %X\n", 9 ^ 5, -9 ^ 5, n ^ 0XFFFF0000);
return 0;
}
运行结果:
12, -14, F5F8002D
四、取反运算(~)
取反运算符~
为单目运算符,右结合性,作用是对参与运算的二进制位取反。例如~1
为0,~0
为1,这和逻辑运算中的!
非常类似。。
例如,~9
可以转换为如下的运算:
~ 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001 (9 在内存中的存储)
-----------------------------------------------------------------------------------
1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0110 (-10 在内存中的存储)
所以~9
的结果为 -10。
例如,~-9
可以转换为如下的运算:
~ 1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)
-----------------------------------------------------------------------------------
0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1000 (8 在内存中的存储)
所以~-9
的结果为 8。
【实例】对上面的分析进行校验。
#include <stdio.h>
int main(){
printf("%d, %d\n", ~9, ~-9 );
return 0;
}
运行结果:
-10, 8
五、左移运算(<<)
左移运算符<<
用来把操作数的各个二进制位全部左移若干位,高位丢弃,低位补0。
例如,9<<3
可以转换为如下的运算:
<< 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001 (9 在内存中的存储)
-----------------------------------------------------------------------------------
0000 0000 -- 0000 0000 -- 0000 0000 -- 0100 1000 (72 在内存中的存储)
所以9<<3
的结果为 72。
又如,(-9)<<3
可以转换为如下的运算:
<< 1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)
-----------------------------------------------------------------------------------
1111 1111 -- 1111 1111 -- 1111 1111 -- 1011 1000 (-72 在内存中的存储)
所以(-9)<<3的结果为 -72
如果数据较小,被丢弃的高位不包含 1,那么左移 n 位相当于乘以 2 的 n 次方。
【实例】对上面的结果进行校验。
#include <stdio.h>
int main(){
printf("%d, %d\n", 9<<3, (-9)<<3 );
return 0;
}
运行结果:
72, -72
六、右移运算(>>)
右移运算符>>
用来把操作数的各个二进制位全部右移若干位,低位丢弃,高位补 0 或 1。如果数据的最高位是 0,那么就补 0;如果最高位是 1,那么就补 1。
例如,9>>3
可以转换为如下的运算:
>> 0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 1001 (9 在内存中的存储)
-----------------------------------------------------------------------------------
0000 0000 -- 0000 0000 -- 0000 0000 -- 0000 0001 (1 在内存中的存储)
所以9>>3
的结果为 1。
又如,(-9)>>3
可以转换为如下的运算:
>> 1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 0111 (-9 在内存中的存储)
-----------------------------------------------------------------------------------
1111 1111 -- 1111 1111 -- 1111 1111 -- 1111 1110 (-2 在内存中的存储)
所以(-9)>>3
的结果为 -2
如果被丢弃的低位不包含 1,那么右移 n 位相当于除以 2 的 n 次方(但被移除的位中经常会包含 1)。
【实例】对上面的结果进行校验。
#include <stdio.h>
int main(){
printf("%d, %d\n", 9>>3, (-9)>>3 );
return 0;
}
运行结果:
1, -2
1. 预备知识
认识二进制,十六进制。会二进制与十进制的相互转化运算由计算机的硬件决定,任何存储于计算机中的数据,其本质都是以二进制码存储。
根据冯~诺依曼提出的经典计算机体系结构框架。一台计算机由运算器,控制器,存储器,输入和输出设备组成。其中运算器,只有加法运算器,没有减法运算器(据说一开始是有的,后来由于减法器硬件开销太大,被废了 )所以,计算机中的没法直接做减法的,它的减法是通过加法来实现的。你也许会说,现实世界中所有的减法也可以当成加法的,减去一个数,可以看作加上这个数的相反数。当然没错,但是前提是要先有负数的概念。这就为什么不得不引入一个该死的符号位。
1. 而且从硬件的角度上看,只有正数加负数才算减法。2. 正数与正数相加,负数与负数相加,其实都可以通过加法器直接相加。原码,反码,补码的产生过程,就是为了解决,计算机做减法和引入符号位(正号和负号)的问题。
2. 正数位移运算
有三个位移运算:
<<:左移>>:右移>>>:无符号右移
我们来举一个栗子:
public class test {public static void main(String[] args){ System.out.println(3 <<1);// 6 System.out.println(3 >>1);// 1 System.out.println(3 >>>1);// 1 System.out.println(-3 <<1);// -6 System.out.println(-3 >>1);// -2 System.out.println(-2 >>>1);// 2147483647 }}
是不是一眼看到上面栗子的打印结果,是不是很懵逼,下来我来解释一下这个结果到底是如何运算出来的。

上面的栗子中有“3”和“-3”,这是两个十进制数,并且是int类型的(java中占四个字节),位运算是基于二进制bit来的,所以我们需要将十进制转换为二进制之后再进行运算:
3 >> 1:十进制“3”转换成二进制为“00000000 00000000 00000000 00000011”,再将二进制右移一位,低位丢弃,高位补0,所以结果为“00000000 00000000 00000000 00000001”,换算成十进制则为“1”3 << 1:十进制“3”转换成二进制为“00000000 00000000 00000000 00000011”,再将二进制左移一位,高位丢弃,低位补0,所以结果为“00000000 00000000 00000000 00000110”,换算成十进制则为“6”对于这两种情况非常好理解,那什么是无符号右移,以及负数是怎么运算的呢?我们先来看-3 << 1与-3 >> 1,这两个负数的左移与右移操作其实和正数类似,都是先将十进制数转换成二进制数,再将二进制数进行移动,所以现在的关键是负数如何用二进制数进行表示。3. 原码、反码、补码
接下来我们主要介绍十进制数用二进制表示的不同方法,所以为了简洁,我们用一个字节,也就是8个bit来表示二进制数。
1. 原码
最高位为符号位,0代表正数,1代表负数,非符号位为该数字绝对值的二进制表示。

原码其实是最容易理解的,只不过需要利用二进制中的第一位来表示符号位,0表示正数,1表示负数,所以可以看到,一个数字用二进制原码表示的话,取值范围是-111 1111 ~ +111 1111,换成十进制就是-127 ~ 127
2. 反码
正数的反码与原码一致;负数的反码是对原码按位取反,只是最高位(符号位)不变。
如果计算机内部采用原码来表示数,那么在进行加法和减法运算的时候,需要转化为两个绝对值的加法和减法运算;计算机既要实现加法器,又要实现减法器,代价有点大,那么可不可以只用一种类型的运算器来实现加和减的远算呢?
很容易想到的就是化减为加,对于计算机来说最好只有加法这样计算机会更加简单高效,我们知道在数学中5-3=2,其实可以转换成5+(-3)=2,这就表示减法可以用加法表示,而乘法是加法的累积,除法是减法的累积,所以在计算机中只要有加法就够了。
一个数字用原码表示是容易理解的,但是需要单独的一个bit来表示符号位。并且在进行加法时,计算机需要先识别某个二进制原码是正数还是负数,识别出来之后再进行相应的运算。这样效率不高,能不能让计算机在进行运算时不用去管符号位,也就是说让符号位也参与运算,这就要用到反码。

正数的反码和原码一样,负数的反码就是在原码的基础上符号位保持不变,其他位取反。
那么我们来看一下,用反码直接运算会是什么情况,我们以5-3举例。
5 - 3等于5 + (-3)

5-3= 5+(-3)= 0000 0101(反码) + 1111 1100(反码)= 0000 0001(反码)= 0000 0001(原码)= 1
这不对呀?!! 5-3=1?,为什么差了1?

我们来看一个特殊的运算:
1-1= 1+(-1)= 0000 0001(反码) + 1111 1110(反码)= 1111 1111(反码)= 1000 0000(原码)= -0
我们在来看一个特殊的运算:
0+0= 0000 0000(反码) + 0000 0000(反码)= 0000 0000(反码)= 0000 0000(原码)= 0
我们可以看到1000 0000表示-0,0000 0000表示0,虽然-0和0是一样的,但是在用原码和反码表示时是不同的,我们可以理解为在用一个字节表示数字取值范围时,这些数字中多了一个-0,所以导致我们在用反码直接运算时符号位可以直接参加运算,但是结果会不对。
3. 补码
为了解决反码的问题就出现了补码。
正数的补码与原码一致;
负数的补码是该数的反码加1。

正数的补码和原码、反码一样,负数的补码就是反码+1。

5-3= 5+(-3)= 0000 0101(补码) + 1111 1101(补码)= 0000 0010(补码)= 0000 0010(原码)= 2
5-3=2!!正确。

再来看特殊的:
1-1= 1+(-1)= 0000 0001(补码) + 1111 1111(补码)= 0000 0000(补码)= 0000 0000(原码)= 0
1-1=0!!正确
再来看一个特殊的运算:
0+0= 0000 0000(补码) + 0000 0000(补码)= 0000 0000(补码)= 0000 0000(原码)= 0
0+0=0!!也正确。
所以,我们可以看到补码解决了反码的问题。
所以对于数字,我们可以使用补码的形式来进行二进制表示。
总结一下就是:
正数的原码、反码、补码是一致的;负数的补码是反码加1,反码是对原码按位取反,只是最高位(符号位)不变;计算机数字运算均是基于补码的。补码有啥好?
如果计算机内部采用原码来表示数,那么在进行加法和减法运算的时候,需要转化为两个绝对值的加法和减法运算;
计算机既要实现加法器,又要实现减法器,代价有点大,那么可不可以只用一种类型的运算器来实现加和减的远算呢?
很容易想到的就是化减为加,举一个生活中的例子来说明这个问题:
时钟一圈是360度,当然也存在365度,但其实它和5度是一样的;
相同的道理,-30度表示逆时针旋转30度,其与顺时针旋转330度是一样的;
这里数字360表示时钟的一圈,在计算机里类似的概念叫模,它可以实现化减为加,本质上是将溢出的部分舍去而不改变结果。
易得,单字节(8位)运算的模为256=2^8。
在没有符号位的情况下,127+2=129,即:

这时,我们将最高位作为符号位,计算机数字均以补码来表示,则1000 0001的原码为减1后按位取反得1111 1111,也就是-127。
也就是说,计算机里的129即表示-127,相当于模256为一圈,顺时针的129则和逆时针127即-127是一样的。
故可以得到以下结论:
负数的补码为模减去该数的绝对值。
如-5的补码为:
-5=256-5=251=1111 1011(二进制)
同样的,临界值-128也可以表示出来:
-128=256-128=128=1000 0000(二进制)
但是正128就会溢出了,故单字节(8位)表示的数字范围为-128--127。
最后,我们来看一下,补码是如何通过模的溢出舍弃操作来完成化减为加的!
16-5=16+(-5)=11

1 0000 1011将溢出位舍去,得0000 1011(二进制)=11。
4. 负数位移运算
我们再来看
-3 << 1
与
-3 >> 1
。
-3用原码表示为
10000000 00000000 00000000 00000011
-3用反码表示为
11111111 11111111 11111111 11111100
-3用补码表示为
11111111 11111111 11111111 11111101
-3 << 1
,表示-3的补码左移一位后为
11111111 11111111 11111111 11111010
,该补码对应的反码为
11111111 11111111 11111111 11111010-1= 11111111 11111111 11111111 11111001
该反码对应的原码为:符号位不变,其他位取反,为
10000000 00000000 00000000 00000110
,表示-6。
所以
-3 << 1 = -6
。
同理
-3 >> 1
是一样的计算方法,这里就不演示了。
5. 无符号右移
上面在进行左移和右移时,我有一点没讲到,就是在对补码进行移动时,符号位是固定不动的,而无符号右移是指在进行移动时,符号位也会跟着一起移动。
比如
-2 >>> 1
。
-2用原码表示为
10000000 00000000 00000000 00000010
-2用反码表示为
11111111 11111111 11111111 11111101
-2用补码表示为
11111111 11111111 11111111 11111110
-2的补码右移1位为:
01111111 11111111 11111111 11111111
右移后的补码对应的反码、原码为:
01111111 11111111 11111111 11111111
(因为现在的符号位为0,表示正数,正数的原、反、补码都相同)
所以,对应的十进制为2147483647。
也就是
-2 >>> 1 = 2147483647
6. 总结
3 << 1 = 6 = 3*2
3 << 2 = 12 = 3*2*2
3 << n = 3*2n
m << n = m * 2n
右移则相反,所以以后在源码中再看到位运算时,可以参考上面的公式。