1. 网格搜索调参
参考博客:Using Grid Search to Optimise CatBoost Parameters
2. Bayesian方法调参:
from skopt.space import Real, Integer
from skopt.utils import use_named_args
from skopt import gp_minimize
reg = CatBoostRegressor(verbose=0, loss_function='MAE')
space = [
Integer(1, 10, name='depth'),
Integer(250, 1000, name='iterations'),
Real(0.02, 0.3, name='learning_rate'),
Integer(1,100, name='l2_leaf_reg'),
Integer(5, 200, name='border_count'),
Integer(5, 200, name='ctr_target_border_count'),
]
@use_named_args(space)
def objective(**params):
reg.set_params(**params)
return np.mean(cross_val_score(reg, train_feature_select, train_label, cv=5, n_jobs=-1,
scoring=make_scorer(mean_absolute_error)))
res_gp = gp_minimize(objective, space, n_calls=50, random_state=0)
print("Best score=%.4f" % res_gp.fun)
print("""Best parameters:
- depth=%d
- iterations=%.6f
- learning_rate=%.6f
- l2_leaf_reg=%d
- border_count=%d
- ctr_target_border_count=%d""" % (res_gp.x[0], res_gp.x[1],
res_gp.x[2], res_gp.x[3],
res_gp.x[4],res_gp.x[5]))
3. 查看参数的importance
fea_df = pd.DataFrame()
fea_df['feature'] = reg.feature_names_
fea_df['importance'] = reg.feature_importances_
fea_df.sort_values('importance', inplace=True,ascending=False)
fea_df.to_csv('feature_importance.csv')
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!