labelme转coco数据集
原始labelme数据目录结构如下:
|-- images
| |--- 1.jpg
| |--- 1.json
| |--- 2.jpg
| |--- 2.json
| |--- .......
|-- labelme2coco.py
|-- labels.txt
-
imges目录下就是你的数据集原始图片,加上labelme标注的json文件。
-
labelme2coco.py源码放到最后。
-
labels.txt就是你的类别标签,假设我有两个类(lm,ls),那么对应的labels.txt内容如下:
__ignore__
_background_
lm
ls
在labelme2coco.py文件的目录下,打开命令行执行:
python labelme2coco.py --input_dir images --output_dir coco --labels labels.txt
-
--input_dir:指定images文件夹
-
--output_dir:指定你的输出文件夹
-
--labels:指定你的labels.txt文件
执行结果如下图:
生成的coco数据集目录结构如下:
|-- annotations
| |--- instances_train2017.json
| |--- instances_val2017.json
|-- train2017
| |--- 2.jpg
| |--- 5.jpg
| |--- .......
|-- val2017
| |--- 1.jpg
| |--- 3.jpg
| |--- .......
|-- visualization
| |--- 1.jpg
| |--- 2.jpg
| |--- .......
训练之用前三个文件夹就可以了,也就是annotations,train2017,val2017就可以了。visualization可以用来观察自己标注的数据集效果。源码里都标注好了,大部分来自labelme官方的源码:labelme/labelme2coco.py · GitHub
如果想调整训练集验证集的比例,可以在labelme2coco.py源码中搜索 test_size
labelme2coco.py源码:
# 命令行执行: python labelme2coco.py --input_dir images --output_dir coco --labels labels.txt
# 输出文件夹必须为空文件夹
import argparse
import collections
import datetime
import glob
import json
import os
import os.path as osp
import sys
import uuid
import imgviz
import numpy as np
import labelme
from sklearn.model_selection import train_test_split
try:
import pycocotools.mask
except ImportError:
print("Please install pycocotools:\n\n pip install pycocotools\n")
sys.exit(1)
def to_coco(args,label_files,train):
# 创建 总标签data
now = datetime.datetime.now()
data = dict(
info=dict(
description=None,
url=None,
version=None,
year=now.year,
contributor=None,
date_created=now.strftime("%Y-%m-%d %H:%M:%S.%f"),
),
licenses=[dict(url=None, id=0, name=None,)],
images=[
# license, url, file_name, height, width, date_captured, id
],
type="instances",
annotations=[
# segmentation, area, iscrowd, image_id, bbox, category_id, id
],
categories=[
# supercategory, id, name
],
)
# 创建一个 {类名 : id} 的字典,并保存到 总标签data 字典中。
class_name_to_id = {}
for i, line in enumerate(open(args.labels).readlines()):
class_id = i - 1 # starts with -1
class_name = line.strip() # strip() 方法用于移除字符串头尾指定的字符(默认为空格或换行符)或字符序列。
if class_id == -1:
assert class_name == "__ignore__" # background:0, class1:1, ,,
continue
class_name_to_id[class_name] = class_id
data["categories"].append(
dict(supercategory=None, id=class_id, name=class_name,)
)
if train:
out_ann_file = osp.join(args.output_dir, "annotations","instances_train2017.json")
else:
out_ann_file = osp.join(args.output_dir, "annotations","instances_val2017.json")
for image_id, filename in enumerate(label_files):
label_file = labelme.LabelFile(filename=filename)
base = osp.splitext(osp.basename(filename))[0] # 文件名不带后缀
if train:
out_img_file = osp.join(args.output_dir, "train2017", base + ".jpg")
else:
out_img_file = osp.join(args.output_dir, "val2017", base + ".jpg")
print("| ",out_img_file)
# ************************** 对图片的处理开始 *******************************************
# 将标签文件对应的图片进行保存到对应的 文件夹。train保存到 train2017/ test保存到 val2017/
img = labelme.utils.img_data_to_arr(label_file.imageData) # .json文件中包含图像,用函数提出来
imgviz.io.imsave(out_img_file, img) # 将图像保存到输出路径
# ************************** 对图片的处理结束 *******************************************
# ************************** 对标签的处理开始 *******************************************
data["images"].append(
dict(
license=0,
url=None,
file_name=base+".jpg", # 只存图片的文件名
# file_name=osp.relpath(out_img_file, osp.dirname(out_ann_file)), # 存标签文件所在目录下找图片的相对路径
## out_img_file : "/coco/train2017/1.jpg"
## out_ann_file : "/coco/annotations/annotations_train2017.json"
## osp.dirname(out_ann_file) : "/coco/annotations"
## file_name : ..\train2017\1.jpg out_ann_file文件所在目录下 找 out_img_file 的相对路径
height=img.shape[0],
width=img.shape[1],
date_captured=None,
id=image_id,
)
)
masks = {} # for area
segmentations = collections.defaultdict(list) # for segmentation
for shape in label_file.shapes:
points = shape["points"]
label = shape["label"]
group_id = shape.get("group_id")
shape_type = shape.get("shape_type", "polygon")
mask = labelme.utils.shape_to_mask(
img.shape[:2], points, shape_type
)
if group_id is None:
group_id = uuid.uuid1()
instance = (label, group_id)
if instance in masks:
masks[instance] = masks[instance] | mask
else:
masks[instance] = mask
if shape_type == "rectangle":
(x1, y1), (x2, y2) = points
x1, x2 = sorted([x1, x2])
y1, y2 = sorted([y1, y2])
points = [x1, y1, x2, y1, x2, y2, x1, y2]
else:
points = np.asarray(points).flatten().tolist()
segmentations[instance].append(points)
segmentations = dict(segmentations)
for instance, mask in masks.items():
cls_name, group_id = instance
if cls_name not in class_name_to_id:
continue
cls_id = class_name_to_id[cls_name]
mask = np.asfortranarray(mask.astype(np.uint8))
mask = pycocotools.mask.encode(mask)
area = float(pycocotools.mask.area(mask))
bbox = pycocotools.mask.toBbox(mask).flatten().tolist()
data["annotations"].append(
dict(
id=len(data["annotations"]),
image_id=image_id,
category_id=cls_id,
segmentation=segmentations[instance],
area=area,
bbox=bbox,
iscrowd=0,
)
)
# ************************** 对标签的处理结束 *******************************************
# ************************** 可视化的处理开始 *******************************************
if not args.noviz:
labels, captions, masks = zip(
*[
(class_name_to_id[cnm], cnm, msk)
for (cnm, gid), msk in masks.items()
if cnm in class_name_to_id
]
)
viz = imgviz.instances2rgb(
image=img,
labels=labels,
masks=masks,
captions=captions,
font_size=15,
line_width=2,
)
out_viz_file = osp.join(
args.output_dir, "visualization", base + ".jpg"
)
imgviz.io.imsave(out_viz_file, viz)
# ************************** 可视化的处理结束 *******************************************
with open(out_ann_file, "w") as f: # 将每个标签文件汇总成data后,保存总标签data文件
json.dump(data, f)
# 主程序执行
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--input_dir", help="input annotated directory")
parser.add_argument("--output_dir", help="output dataset directory")
parser.add_argument("--labels", help="labels file", required=True)
parser.add_argument("--noviz", help="no visualization", action="store_true")
args = parser.parse_args()
if osp.exists(args.output_dir):
print("Output directory already exists:", args.output_dir)
sys.exit(1)
os.makedirs(args.output_dir)
print("| Creating dataset dir:", args.output_dir)
if not args.noviz:
os.makedirs(osp.join(args.output_dir, "visualization"))
# 创建保存的文件夹
if not os.path.exists(osp.join(args.output_dir, "annotations")):
os.makedirs(osp.join(args.output_dir, "annotations"))
if not os.path.exists(osp.join(args.output_dir, "train2017")):
os.makedirs(osp.join(args.output_dir, "train2017"))
if not os.path.exists(osp.join(args.output_dir, "val2017")):
os.makedirs(osp.join(args.output_dir, "val2017"))
# 获取目录下所有的.jpg文件列表
feature_files = glob.glob(osp.join(args.input_dir, "*.jpg"))
print('| Image number: ', len(feature_files))
# 获取目录下所有的joson文件列表
label_files = glob.glob(osp.join(args.input_dir, "*.json"))
print('| Json number: ', len(label_files))
# feature_files:待划分的样本特征集合 label_files:待划分的样本标签集合 test_size:测试集所占比例
# x_train:划分出的训练集特征 x_test:划分出的测试集特征 y_train:划分出的训练集标签 y_test:划分出的测试集标签
x_train, x_test, y_train, y_test = train_test_split(feature_files, label_files, test_size=0.3)
print("| Train number:", len(y_train), '\t Value number:', len(y_test))
# 把训练集标签转化为COCO的格式,并将标签对应的图片保存到目录 /train2017/
print("—"*50)
print("| Train images:")
to_coco(args,y_train,train=True)
# 把测试集标签转化为COCO的格式,并将标签对应的图片保存到目录 /val2017/
print("—"*50)
print("| Test images:")
to_coco(args,y_test,train=False)
if __name__ == "__main__":
print("—"*50)
main()
print("—"*50)