张量的定义
线性代数与矩阵
张量(Tensor)
几何代数中定义的张量,是基于向量和矩阵的推广。
- 标量,可以视为零阶张量
- 向量,可以视为一阶张量
- 矩阵,可以视为二阶张量
- 图片以矩阵形态表示:将一张彩色图片表示成一个 的三阶张量,其中 是高, 是宽, 通常取 ,表示彩色图 个颜色通道。
- 在这个例子的基础上,将这一定义继续扩展,即:用四阶张量(样本,高度,宽度,通道)表示一个包含多张图片的数据集,其中,样本表示图片在数据集中的编号。
- 用五阶张量(样本,帧速,高度,宽度,通道)表示视频。
AI中的应用:张量是深度学习中一个非常重要的概念,大部分的数据和权重都是以张量的形态存储的,后续的所有运算和优化算法也都是基于张量进行的。
目前我的知识储备仍停留在二阶张量上。