大学物理下笔记

电荷和场

关键方程

说明 方程
Coulomb's law 库仑定律 \(\vec{\mathbf{F}}_{12} = \dfrac{1}{4\pi\varepsilon_0}\dfrac{q_1q_2}{r_{12}^2}\hat{\mathbf{r}}_{12}\)
无限导线的电场 \(\vec{\mathbf{E}}(z)=\dfrac{1}{4\pi\varepsilon_0}\dfrac{2\lambda}{z}\hat{\mathbf{k}}\)
无限平面的电场 \(\vec{\mathbf{E}}=\dfrac{\sigma}{2\varepsilon_0}\hat{\mathbf{k}}\)
电偶极矩 Electric Dipole moment \(\vec{\mathbf{p}}=q\vec{\mathbf{d}}\)
外部电场中电偶极子上的扭矩 Torque \(\vec{\mathbf{\tau}}=\vec{\mathbf{p}}\times\vec{\mathbf{E}}\)

电偶极子(Electric dipoles)

1698504168195

偶极矩 定义为: \(\vec{p} = q\vec{d}\),其中 \(q\) 为电荷量,\(\vec{d}\) 为电荷间距
外部电场中偶极子上的扭矩为: \(\vec{\tau} = \vec{p} \times \vec{E}\),其中 \(\vec{E}\) 为电场强度

电偶极子的电场为: \(\vec{E} = \dfrac{-1}{4\pi\varepsilon_0}\left(\dfrac{\vec{p}}{r^3}\right)\)

高斯定律

关键方程

说明 方程
均匀电场的电通量 flux \(\Phi = \vec{\mathbf{E}}\cdot\vec{\mathbf{A}}\)
通过开放曲面的电通量 \(\Phi = \displaystyle\int_{S} \vec{\mathbf{E}}\cdot\hat{\mathbf{n}}dA = \displaystyle\int_{S} \vec{\mathbf{E}}\cdot d\vec{\mathbf{A}}\)
通过封闭曲面的电通量 \(\Phi = \displaystyle\oint_{S} \vec{\mathbf{E}}\cdot\hat{\mathbf{n}}dA = \displaystyle\oint_{S} \vec{\mathbf{E}}\cdot d\vec{\mathbf{A}}\)
高斯定律 \(\displaystyle\oint_{S} \vec{\mathbf{E}}\cdot \hat{\mathbf{n}}dA = \dfrac{q_{enc}}{\varepsilon_0}\)
导体表面外的电场 \(E = \dfrac{\sigma}{\varepsilon_0}\)

电势

关键方程

说明 方程
双电荷系统的势能 \(\displaystyle U(r) = k\dfrac{q_1q_2}{r}\)
电势差 \(\Delta V = \dfrac{\Delta U}{q}\)
电势 \(\displaystyle V=\dfrac{U}{q} = -\int_{R}^{P} \vec{\mathbf{E}}\cdot d\vec{\mathbf{l}}\)
两点之间的电势差 \(\displaystyle V_{BA} = -\int_{A}^{B} \vec{\mathbf{E}}\cdot d\vec{\mathbf{l}} = V_B - V_A\)
点电荷的电势 \(\displaystyle V = \dfrac{1}{4\pi\varepsilon_0}\dfrac{q}{r} = \dfrac{kq}{r}\)
电偶极矩 \(\vec{\mathbf{p}}=q\vec{\mathbf{d}}\)
电偶极子的电势 \(\displaystyle V = \dfrac{1}{4\pi\varepsilon_0}\dfrac{\vec{\mathbf{p}}\cdot\hat{\mathbf{r}}}{r^2}\) = \(k\dfrac{\vec{\mathbf{p}}\cdot\hat{\mathbf{r}}}{r^2}\)
连续电荷分布的电势 \(\displaystyle V_P = \dfrac{1}{4\pi\varepsilon_0}\displaystyle\int \dfrac{dq}{r} = k\displaystyle\int \dfrac{dq}{r}\)
电场作为电势梯度 \(\vec{\mathbf{E}} = -\vec{\mathbf{\nabla}}V\)
笛卡尔坐标中的 Nabla 算子 \(\vec{\mathbf{\nabla}} = \hat{\mathbf{i}}\dfrac{\partial}{\partial x} + \hat{\mathbf{j}}\dfrac{\partial}{\partial y} + \hat{\mathbf{k}}\dfrac{\partial}{\partial z}\)
柱坐标中的 Nabla 算子 \(\vec{\mathbf{\nabla}} = \hat{\mathbf{r}}\dfrac{\partial}{\partial r} + \hat{\mathbf{\theta}}\dfrac{1}{r}\dfrac{\partial}{\partial \theta} + \hat{\mathbf{k}}\dfrac{\partial}{\partial z}\)
球坐标中的 Nabla 算子 \(\vec{\mathbf{\nabla}} = \hat{\mathbf{r}}\dfrac{\partial}{\partial r} + \hat{\mathbf{\theta}}\dfrac{1}{r}\dfrac{\partial}{\partial \theta} + \hat{\mathbf{\varphi}}\dfrac{1}{r\sin\theta}\dfrac{\partial}{\partial \varphi}\)

电容

关键方程

说明 方程
电容 Capacitance \(\displaystyle C = \dfrac{Q}{V}\)
平行板电容器(parallel-plate capacitor)的电容 \(\displaystyle C = \dfrac{\sigma A}{Ed} = \varepsilon_0\dfrac{ A}{d}\)
真空球形电容器(vacuum spherical capacitor)的电容 \(\displaystyle C = 4\pi\varepsilon_0\dfrac{R_1R_2}{R_2-R_1}\)
真空圆柱体电容器(vacuum cylindrical capacitor)的电容 \(\displaystyle C = 2\pi\varepsilon_0\dfrac{l}{\ln\dfrac{R_2}{R_1}}\)
串联电容器的电容 \(\displaystyle \dfrac{1}{C} = \dfrac{1}{C_1} + \dfrac{1}{C_2} + \cdots + \dfrac{1}{C_n}\)
并联电容器的电容 \(\displaystyle C = C_1 + C_2 + \cdots + C_n\)
能量密度 \(\displaystyle u_E = \dfrac{1}{2}\varepsilon_0E^2\)
电容器的能量 \(\displaystyle U_C = \dfrac{1}{2}CV^2 = \dfrac{1}{2}QV = \dfrac{1}{2}\dfrac{Q^2}{C}\)
带电介质的电容器电容 \(\displaystyle C = \kappa C_0\)
带电介质的电容器能量 \(\displaystyle U = \dfrac{1}{\kappa}U_0\)
介电常数 Dielectric constant \(\displaystyle \kappa = \dfrac{E_0}{E}\)
电介质中的感应电场 \(\displaystyle \vec{\mathbf{E}}_i=(\dfrac{1}{\kappa}-1)\vec{\mathbf{E}}_0\)

易错问题

Figure shows two plates of a capacitor separated by a distance d. A metal plate of thickness t is shown in between the two plates. The distance of the metal from one capacitor plate is d1 and that from the other capacitor plate is d2.

如图,一个金属板插入两个电容器板中,此时计算电容应该直接忽略中间的金属导体高度,答案为

\[C = \varepsilon_0\dfrac{A}{d_1+ \]

电流和电阻

关键方程

说明 方程
电流 \(\displaystyle I = \dfrac{dQ}{dt}\)
漂移速度 drift velocity \(\displaystyle v_d = \dfrac{I}{nqA}\)
电流密度 \(\displaystyle I = \iint \vec{\mathbf{J}}\cdot d\vec{\mathbf{A}}\)
电阻率 resistivity \(\displaystyle \rho = \dfrac{E}{J} = \dfrac{E}{\sigma E} = \dfrac{1}{\sigma}\)
电阻率和温度的关系 \(\displaystyle \rho = \rho_0[1+\alpha(T-T_0)]\)
电阻 \(\displaystyle R = \rho \dfrac{L}{A} \equiv \dfrac{V}{I}\)

直流电路

关键方程

说明 方程
路端电压 \(\displaystyle V_{terminal} = \varepsilon - Ir_{eq}\)
交汇点原则 Junction rule \(\displaystyle \sum I_{in} = \sum I_{out}\)
循环原则 Loop rule \(\displaystyle \sum V_{loop} = 0\)
时间常数 \(\tau = RC\)
电容器充电的电荷 \(q(t) = C\varepsilon(1-e^{-\frac{t}{RC}}) = Q(1-e^{-\frac{t}{\tau}})\)
电容器放电的电荷 \(q(t) = Qe^{-\frac{t}{RC}} = Qe^{-\frac{t}{\tau}}\)
电容器放电的电流 \(I(t) = \dfrac{dq}{dt} = -\dfrac{Q}{RC}e^{-\frac{t}{RC}} = -\dfrac{Q}{RC}e^{-\frac{t}{\tau}}\)

磁力和磁场

关键方程

说明 方程
洛伦兹力 \(\displaystyle \vec{\mathbf{F}} = q(\vec{\mathbf{v}}\times\vec{\mathbf{B}})\)
粒子在磁场中的路径半径 \(\displaystyle r = \dfrac{mv}{qB}\)
粒子在磁场中的运动周期 \(\displaystyle T = \dfrac{2\pi m}{qB}\)
均匀磁场中载流直导线受力 \(\displaystyle \vec{\mathbf{F}} = I\vec{\mathbf{l}}\times\vec{\mathbf{B}}\)
磁偶极矩 magnetic dipole moment \(\displaystyle \vec{\mathbf{\mu}} = NIA\hat{\mathbf{n}}\)
电流环路上的扭矩 \(\displaystyle \vec{\mathbf{\tau}} = \vec{\mathbf{\mu}}\times\vec{\mathbf{B}}\)
磁偶极子的能量 \(\displaystyle U = -\vec{\mathbf{\mu}}\cdot\vec{\mathbf{B}}\)
霍尔电位 \(\displaystyle V = \dfrac{IBl}{neA} = Blv_d\)
质谱仪中的电荷质量比 \(\displaystyle \dfrac{q}{m} = \dfrac{E}{BB_0R}\)
回旋加速器中的粒子最大速度 \(\displaystyle v_{max} = \dfrac{qBR}{m}\)

磁场的来源

关键方程

说明 方程
Biot-Savart 定律 \(\displaystyle \vec{\mathbf{B}} = \dfrac{\mu_0}{4\pi} \int \dfrac{Id\vec{\mathbf{l}}\times\hat{\mathbf{r}}}{r^2}\)
长直导线的磁场 \(\displaystyle \vec{\mathbf{B}} = \dfrac{\mu_0I}{2\pi r}\hat{\mathbf{\theta}}\)
平行电流之间的力 \(\displaystyle \dfrac{F}{l} = \dfrac{\mu_0I_1I_2}{2\pi r}\)
电流环路中心的磁场 \(\displaystyle B = \dfrac{\mu_0I}{2R}\)
安培环路定理 \(\displaystyle \oint \vec{\mathbf{B}}\cdot d\vec{\mathbf{l}} = \mu_0I_{enc}\)
螺线管的磁场 \(\displaystyle B = \mu_0nI\)
环形管的磁场 \(\displaystyle B = \dfrac{\mu_0NI}{2R}\)
磁导率 \(\displaystyle \mu = (1+\chi)\mu_0\)

电磁感应

关键方程

说明 方程
磁通量 \(\displaystyle \Phi_m = \int_S \vec{\mathbf{B}}\cdot \hat{\mathbf{n}}dA\)
法拉第电磁感应定律 \(\displaystyle \varepsilon = -\dfrac{d\Phi_m}{dt}\)
动生电动势 Motionally induced emf \(\displaystyle \varepsilon = Blv\)
环路运动电动势 \(\displaystyle \varepsilon = \oint \vec{\mathbf{E}}\cdot d\vec{\mathbf{l}} = -\dfrac{d\Phi_m}{dt}\)
发动机产生的电动势 \(\displaystyle \varepsilon = NBA\omega\sin\omega t\)

电感(Inductance)

关键方程

说明 方程
磁通量互感 \(\displaystyle M = \dfrac{N_2\Phi_{21}}{I_1} = \dfrac{N_1\Phi_{12}}{I_2}\)
电路中的互感 \(\varepsilon_1 = -M\dfrac{dI_2}{dt}\)
以磁通量表示的自感 \(\displaystyle LI=N\Phi_m\)
以电动势表示的自感 \(\displaystyle \varepsilon = -L\dfrac{dI}{dt}\)
螺线管(solenoid)的自感 \(\displaystyle L = \dfrac{\mu_0N^2A}{l}\)
环形线圈(toroid)的自感 \(\displaystyle L = \dfrac{\mu_0N^2h}{2\pi}\ln\left(\dfrac{R_2}{R_1}\right)\)
电感器的能量 \(\displaystyle U = \dfrac{1}{2}LI^2\)
RL电路中的I-t关系 \(\displaystyle I(t) = \dfrac{\varepsilon}{R}(1-e^{-\frac{t}{\tau_T}})\)
RL电路中的时间常数 \(\displaystyle \tau_T = \dfrac{L}{R}\)
LC电路中的电荷震荡 \(\displaystyle q(t) = q_{0}\cos(\omega t + \phi)\)
LC电路中的角频率 \(\displaystyle \omega = \sqrt{\dfrac{1}{LC}}\)
LC电路中的电流震荡 \(\displaystyle i(t) = \omega q_{0}\sin(\omega t + \phi)\)
RLC电路中的q-t关系 \(\displaystyle q(t) = q_{0}e^{-\frac{R}{2L}t}\cos(\omega t + \phi)\)
RLC电路中的角频率 \(\displaystyle \omega = \sqrt{\dfrac{1}{LC}-\left(\dfrac{R}{2L}\right)^2}\)

交流电路

关键方程

说明 方程
交流电压 $ \displaystyle v=V_0\sin\omega t$
交流电流 $ \displaystyle i=I_0\sin\omega t$
容抗 capacitive reactance $ \displaystyle X_C = \dfrac{1}{\omega C}$
感抗 inductive reactance $ \displaystyle X_L = \omega L$
RLC串联电路的相位角 \(\displaystyle \tan\phi = \dfrac{X_L-X_C}{R}\)
RLC串联电路的阻抗 \(\displaystyle Z = \sqrt{R^2+(X_L-X_C)^2}\)
欧姆定律交流版本 \(\displaystyle I_0 = \dfrac{V_0}{Z}\)
电流的有效值 \(\displaystyle I_{rms} = \dfrac{I_0}{\sqrt{2}}\)
电压的有效值 \(\displaystyle V_{rms} = \dfrac{V_0}{\sqrt{2}}\)
电路元件平均功率 \(\displaystyle P_{avg} = \dfrac{1}{2}I_0V_0\cos\phi\)
电阻器的平均功率 \(\displaystyle P_{avg} = \dfrac{1}{2}I_{0}V_{0}=I_{rms}V_{rms}=I_{rms}^2R\)
电路的谐振角频率(resonant angular frequency) \(\displaystyle \omega_0 = \sqrt{\dfrac{1}{LC}}\)
电路的品质函数 \(\displaystyle Q = \dfrac{\omega_0L}{R} = \dfrac{1}{\omega_0CR}=\dfrac{\omega_0}{\Delta\omega}\)
变压器的电压比 \(\displaystyle \dfrac{V_2}{V_1} = \dfrac{N_2}{N_1}\)
变压器的电流比 \(\displaystyle \dfrac{I_2}{I_1} = \dfrac{N_1}{N_2}\)

电磁波

关键方程

说明 方程
位移电流(displacement current) \(\displaystyle I_d = \varepsilon_0\dfrac{d\Phi_E}{dt}\)
高斯定律 \(\displaystyle \oint \vec{\mathbf{E}}\cdot d\vec{\mathbf{A}} = \dfrac{Q_{in}}{\varepsilon_0}\)
高斯磁定律 \(\displaystyle \oint \vec{\mathbf{B}}\cdot d\vec{\mathbf{A}} = 0\)
法拉第定律 \(\displaystyle \oint \vec{\mathbf{E}}\cdot d\vec{\mathbf{s}} = -\dfrac{d\Phi_m}{dt}\)
安培-麦克斯韦定律 \(\displaystyle \oint \vec{\mathbf{B}}\cdot d\vec{\mathbf{s}} = \mu_0I_{}+\mu_0\varepsilon_0\dfrac{d\Phi_E}{dt}\)
平面电磁波的波动方程 \(\displaystyle \dfrac{\partial^2E_y}{\partial x^2} = \varepsilon_0\mu_0\dfrac{\partial^2E_y}{\partial t^2}\)
电磁波的速度 \(\displaystyle v = \dfrac{1}{\sqrt{\varepsilon_0\mu_0}} = c\)
电磁场中电场和磁场的比值 \(\displaystyle \dfrac{E}{B} = c\)
能量通量矢量(Poynting vector) \(\displaystyle \vec{\mathbf{S}} = \dfrac{1}{\mu_0}\vec{\mathbf{E}}\times\vec{\mathbf{B}}\)
电磁波的平均强度 \(\displaystyle I=S_{avg} = \dfrac{c\varepsilon_0}{2}E_{max}^2=\dfrac{c\mu_0}{2}B_{max}^2=\dfrac{E_{max}B_{max}}{2\mu_0}\)
完全吸收时的辐射压力 \(\displaystyle P = \dfrac{I}{c}\)
完全反射时的辐射压力 \(\displaystyle P = \dfrac{2I}{c}\)
posted @ 2023-11-20 16:51  520Enterprise  阅读(67)  评论(0编辑  收藏  举报