Python 生成器和协程
Python3 迭代器与生成器
迭代器
迭代是Python最强大的功能之一,是访问集合元素的一种方式。
迭代器是一个可以记住遍历的位置的对象。
迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。
迭代器有两个基本的方法:iter() 和 next()。
字符串,列表,元组,集合、字典、range()、文件句柄等可迭代对象(iterable)都可用于创建迭代器:
- 内部含有__iter__()方法的就是可迭代对象,遵循可迭代协议。
- 可迭代对象.__iter__() 或者 iter(可迭代对象)化成迭代器
>>> list = [1,2,3,4] >>> it = iter(list) # 创建迭代器对象 >>> next(it) # 输出迭代器的下一个元素 1 >>> next(it) 2 >>>
迭代器对象可以使用常规for语句进行遍历:
>>> list = ['a', 'b', 'c', 'd'] >>> it = iter(list) # 创建迭代器对象 >>> for x in it: print(x, end=" ") a b c d >>>
也可以使用 next() 函数:
>>> lst = [2,6,8,9] >>> it = iter(lst) # 创建迭代器对象 >>> >>> while True: try: print(next(it)) except StopIteration: break 2 6 8 9 >>>
创建一个迭代器
把一个类作为一个迭代器使用需要在类中实现两个方法 __iter__() 与 __next__() 。
如果你已经了解的面向对象编程,就知道类都有一个构造函数,Python 的构造函数为 __init__(), 它会在对象初始化的时候执行。
__iter__() 方法返回一个特殊的迭代器对象, 这个迭代器对象实现了 __next__() 方法并通过 StopIteration 异常标识迭代的完成。 __next__() 方法(Python 2 里是 next())会返回下一个迭代器对象。
创建一个返回数字的迭代器(计数器),初始值为 1,逐步递增 1:
class Counter: def __iter__(self): self.a = 1 return self def __next__(self): x = self.a self.a += 1 return x myclass = Counter() myiter = iter(myclass) print(next(myiter)) print(next(myiter)) print(next(myiter)) print(next(myiter)) print(next(myiter))
# 执行输出结果为: 1 2 3 4 5
StopIteration
StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 __next__() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。
>>> str1 = "Python" >>> strObj = str1.__iter__() >>> strObj.__next__() 'P' >>> strObj.__next__() 'y' >>> strObj.__next__() 't' >>> strObj.__next__() 'h' >>> strObj.__next__() 'o' >>> strObj.__next__() 'n' >>> strObj.__next__() Traceback (most recent call last): File "<pyshell#33>", line 1, in <module> strObj.__next__() StopIteration >>>
那么如何判断一个对象是否是可迭代对象?
- 内部是否含有__iter__方法:
- 借助 collections 中 Iterable,Iterator 判断类型
>>> tup = (1,2,3) >>> type(tup) <class 'tuple'> >>> dir(tup) # 带参数时,返回参数的属性、方法列表。 ['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__',
'__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'count', 'index'] >>> print('__iter__' in dir(tup)) True >>>
>>> dic = {1:'dict', 2:'str', 3:'list', 4:'tuple', 5:'set', 6:'range()',7:'flie handler'} >>> isinstance(dic, Iterable) True >>> isinstance(dic, Iterator) False >>> >>> ran = range(6) >>> type(ran) <class 'range'> >>> isinstance(ran, Iterable) True >>> isinstance(ran, Iterator) False >>>
生成器
在 Python 中,使用了 yield 的函数被称为生成器(generator)。
跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
调用一个生成器函数,返回的是一个迭代器对象。
yield Vs return:
return返回后,函数状态终止,而yield会保存当前函数的执行状态,在返回后,函数又回到之前保存的状态继续执行。
- return 终止函数,yield 不会终止生成器函数。
- 都会返回一个值,return给函数的执行者返回值,yield是给next()返回值
以下实例使用 yield 实现斐波那契数列:
>>> def fib(max): # 生成器函数 - 斐波那契 a, b, n = 0, 1, 0 while n < max: yield b # 使用 yield a, b = b, a + b n = n + 1 >>> f = fib(6) # 调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象! >>> f # Python 解释器会将其视为一个 generator <generator object fib at 0x000001C6CB627780> >>> >>> for n in fib(5): print(n) 1 1 2 3 5 >>> >>> f = fib(5) >>> next(f) # 使用next函数从生成器中取值,使用next可以推动生成器的执行 1 >>> next(f) 1 >>> next(f) 2 >>> next(f) 3 >>> next(f) 5 >>> next(f) # 当函数中已经没有更多的yield时继续执行next(g),遇到StopIteration Traceback (most recent call last): File "<pyshell#37>", line 1, in <module> next(f) StopIteration >>> >>> fwrong = fib(6) >>> fwrong.next() # Python2 中的语法,Python3 会报错 Traceback (most recent call last): File "<pyshell#40>", line 1, in <module> fwrong.next() # Python2 中的语法,Python3 会报错 AttributeError: 'generator' object has no attribute 'next' >>>
send向生成器中发送数据。send的作用相当于next,只是在驱动生成器继续执行的同时还可以向生成器中传递数据。
>>> import numbers >>> def gen_sum(): total = 0 while True: num = yield if isinstance(num, numbers.Integral): total += num print('total: ', total) elif num is None: break return total >>> g = gen_sum() >>> g <generator object gen_sum at 0x0000026A6703D3B8> >>> g.send(None) # 相当于next(g),预激活生成器 >>> g.send(2) total: 2 >>> g.send(6) total: 8 >>> g.send(12) total: 20 >>> g.send(None) # 停止生成器 Traceback (most recent call last): File "<pyshell#40>", line 1, in <module> g.send(None) StopIteration: 20 >>> >>> try: g.send(None) # 停止生成器 except StopIteration as e: print(e.value) None >>>
yield from关键字
yield from 将一个可迭代对象变成一个迭代器返回,也可以说,yield from关键字可以直接返回一个生成器
>>> def func(): lst = ['str', 'tuple', 'list', 'dict', 'set'] yield lst >>> gen = func() >>> next(gen) ['str', 'tuple', 'list', 'dict', 'set'] >>> for i in gen: print(i) >>> # yield from 将一个可迭代对象变成一个迭代器返回 >>> def func2(): lst = ['str', 'tuple', 'list', 'dict', 'set'] yield from lst >>> gen2 = func2() >>> next(gen2) 'str' >>> next(gen2) 'tuple' >>> for i in gen2: print(i) list dict set >>>
>>> lst = ['H','e','l'] >>> dic = {'l':'vvvvv','o':'eeeee'} >>> str1 = 'Python' >>> >>> def yield_gen(): for i in lst: yield i for j in dic: yield j for k in str1: yield k >>> for item in yield_gen(): print(item, end='') HelloPython >>> >>> l = ['H','e','l'] >>> d = {'l':'xxxxx','o':'ooooo'} >>> s = 'Java' >>> >>> def yield_from_gen(): yield from l yield from d yield from s >>> for item in yield_from_gen(): print(item, end='') HelloJava >>>
为什么使用生成器
更容易使用,代码量较小内存使用更加高效。比如:
- 列表是在建立的时候就分配所有的内存空间,
- 而生成器仅仅是需要的时候才使用,更像一个记录代表了一个无限的流。有点像数据库操作单条记录使用的游标。
- 如果我们要读取并使用的内容远远超过内存,但是需要对所有的流中的内容进行处理,那么生成器是一个很好的选择,
- 比如可以让生成器返回当前的处理状态,由于它可以保存状态,那么下一次直接处理即可。
协程
根据维基百科给出的定义,“协程 是为非抢占式多任务产生子程序的计算机程序组件,协程允许不同入口点在不同位置暂停或开始执行程序”。从技术的角度来说,“协程就是你可以暂停执行的函数”。如果你把它理解成“就像生成器一样”,那么你就想对了。
协程,又称微线程,纤程。英文名Coroutine。
协程的概念很早就提出来了,但直到最近几年才在某些语言(如Lua)中得到广泛应用。
# 与多线程、多进程等并发模型不同,协程依靠user-space调度,而线程、进程则是依靠kernel来进行调度。 # 线程、进程间切换都需要从用户态进入内核态,而协程的切换完全是在用户态完成,且不像线程进行抢占式调度,协程是非抢占式的调度。 # 通常多个运行在同一调度器中的协程运行在一个线程内,这也消除掉了多线程同步等带来的编程复杂性。同一时刻同一调度器中的协程只有一个会处于运行状态,这一点很容易从前言得出。 一个通常的误解是协程不能利用CPU的多核心,通过利用多个线程多个调度器,协程也是可以用到CPU多核心性能的。
协程的定义 协程最早的描述是由Melvin Conway于1958给出“subroutines who act as the master program”(与主程序行为类似的子例程),此后他又在博士论文中给出了如下定义: · the values of data local to a coroutine persist between successive calls(协程的局部数据在后续调用中始终保持) · the execution of a coroutine is suspended as control leaves it, only to carry on where it left off when control re-enters the coroutine at some later stage (当控制流程离开时,协程的执行被挂起,此后控制流程再次进入这个协程时,这个协程只应从上次离开挂起的地方继续)。
协程的特点在于是一个线程执行,那和多线程比,协程有何优势?
- 最大的优势就是协程极高的执行效率。
- 因为子程序切换不是线程切换,而是由程序自身控制,因此,没有线程切换的开销,
- 和多线程比,线程数量越多,协程的性能优势就越明显。
- 第二大优势就是不需要多线程的锁机制,
- 因为只有一个线程,也不存在同时写变量冲突,
- 在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多。
因为协程是一个线程执行,那怎么利用多核CPU呢?
- 最简单的方法是多进程+协程,既充分利用多核,又充分发挥协程的高效率,可获得极高的性能。
- Python对协程的支持是通过generator实现的。
使用yield实现协程
#基于yield实现异步 def consumer(): '''任务1:接收数据,处理数据''' while True: x=yield def producer(): '''任务2:生产数据''' g=consumer() next(g) for i in range(10000000): g.send(i) producer()
使用yield from实现的协程
import datetime import heapq # 堆模块 import time class Task: def __init__(self, wait_until, coro): self.coro = coro self.waiting_until = wait_until def __eq__(self, other): return self.waiting_until == other.waiting_until def __lt__(self, other): return self.waiting_until < other.waiting_until class SleepingLoop: def __init__(self, *coros): self._new = coros self._waiting = [] def run_until_complete(self): for coro in self._new: wait_for = coro.send(None) heapq.heappush(self._waiting, Task(wait_for, coro)) while self._waiting: now = datetime.datetime.now() task = heapq.heappop(self._waiting) if now < task.waiting_until: delta = task.waiting_until - now time.sleep(delta.total_seconds()) now = datetime.datetime.now() try: print('*'*50) wait_until = task.coro.send(now) print('-'*50) heapq.heappush(self._waiting, Task(wait_until, task.coro)) except StopIteration: pass def sleep(seconds): now = datetime.datetime.now() wait_until = now + datetime.timedelta(seconds=seconds) print('before yield wait_until') actual = yield wait_until # 返回一个datetime数据类型的时间 print('after yield wait_until') return actual - now def countdown(label, length, *, delay=0): print(label, 'waiting', delay, 'seconds before starting countdown') delta = yield from sleep(delay) print(label, 'starting after waiting', delta) while length: print(label, 'T-minus', length) waited = yield from sleep(1) length -= 1 print(label, 'lift-off!') def main(): loop = SleepingLoop(countdown('A', 5), countdown('B', 3, delay=2), countdown('C', 4, delay=1)) start = datetime.datetime.now() loop.run_until_complete() print('Total elapsed time is', datetime.datetime.now() - start) if __name__ == '__main__': main()
执行结果:
A waiting 0 seconds before starting countdown before yield wait_until B waiting 2 seconds before starting countdown before yield wait_until C waiting 1 seconds before starting countdown before yield wait_until ************************************************** after yield wait_until A starting after waiting 0:00:00 A T-minus 5 before yield wait_until -------------------------------------------------- ************************************************** after yield wait_until C starting after waiting 0:00:01.001511 C T-minus 4 before yield wait_until -------------------------------------------------- ************************************************** after yield wait_until A T-minus 4 before yield wait_until -------------------------------------------------- ************************************************** after yield wait_until B starting after waiting 0:00:02.000894 B T-minus 3 before yield wait_until -------------------------------------------------- ************************************************** after yield wait_until C T-minus 3 before yield wait_until -------------------------------------------------- ************************************************** after yield wait_until A T-minus 3 before yield wait_until -------------------------------------------------- ************************************************** after yield wait_until B T-minus 2 before yield wait_until -------------------------------------------------- ************************************************** after yield wait_until C T-minus 2 before yield wait_until -------------------------------------------------- ************************************************** after yield wait_until A T-minus 2 before yield wait_until -------------------------------------------------- ************************************************** after yield wait_until B T-minus 1 before yield wait_until -------------------------------------------------- ************************************************** after yield wait_until C T-minus 1 before yield wait_until -------------------------------------------------- ************************************************** after yield wait_until A T-minus 1 before yield wait_until -------------------------------------------------- ************************************************** after yield wait_until B lift-off! ************************************************** after yield wait_until C lift-off! ************************************************** after yield wait_until A lift-off! Total elapsed time is 0:00:05.005168
asyncio模块
asyncio
是Python 3.4版本引入的标准库,直接内置了对异步IO的支持。
用asyncio
提供的@asyncio.coroutine
可以把一个generator标记为coroutine类型,然后在coroutine内部用yield from
调用另一个coroutine实现异步操作。
asyncio
的编程模型就是一个消息循环。我们从asyncio
模块中直接获取一个EventLoop
的引用,然后把需要执行的协程扔到EventLoop
中执行,就实现了异步IO。
coroutine+yield from
import asyncio @asyncio.coroutine def hello(): print("Nice to learn asyncio.coroutine!") # 异步调用asyncio.sleep(1): r = yield from asyncio.sleep(1) print("Nice to learn asyncio.coroutine again !") # 获取EventLoop: loop = asyncio.get_event_loop() # 执行coroutine loop.run_until_complete(hello()) loop.close()
Nice to learn asyncio.coroutine ! Nice to learn asyncio.coroutine again !
为了简化并更好地标识异步IO,从Python 3.5开始引入了新的语法async
和await
,可以让coroutine的代码更简洁易读。
请注意,async
和 await
是针对coroutine的新语法,要使用新的语法,只需要做两步简单的替换:
- 把
@asyncio.coroutine
替换为async
; - 把
yield from
替换为await
。
async+await
在协程函数中,可以通过await语法来挂起自身的协程,并等待另一个协程完成直到返回结果:
import asyncio async def hello(): print("Nice to learn asyncio.coroutine!") # 异步调用asyncio.sleep(1): await asyncio.sleep(1) print("Nice to learn asyncio.coroutine again !") # 获取EventLoop: loop = asyncio.get_event_loop() # 执行coroutine loop.run_until_complete(hello()) loop.close()
执行多个任务
import threading import asyncio async def hello(): print('Hello Python! (%s)' % threading.currentThread()) await asyncio.sleep(1) print('Hello Python again! (%s)' % threading.currentThread()) loop = asyncio.get_event_loop() tasks = [hello(), hello()] loop.run_until_complete(asyncio.wait(tasks)) loop.close()
结果:
Hello Python! (<_MainThread(MainThread, started 4536)>) Hello Python! (<_MainThread(MainThread, started 4536)>) Hello Python again! (<_MainThread(MainThread, started 4536)>) Hello Python again! (<_MainThread(MainThread, started 4536)>)
获取返回值
import threading import asyncio async def hello(): print('Hello Python! (%s)' % threading.currentThread()) await asyncio.sleep(1) print('Hello Python again! (%s)' % threading.currentThread()) return "It's done" loop = asyncio.get_event_loop() task = loop.create_task(hello()) loop.run_until_complete(task) ret = task.result() print(ret)
结果:
Hello Python! (<_MainThread(MainThread, started 6136)>) Hello Python again! (<_MainThread(MainThread, started 6136)>) It's done
执行多个任务获取返回值
import threading import asyncio async def hello(seq): print('Hello Python! (%s)' % threading.currentThread()) await asyncio.sleep(1) print('Hello Python again! (%s)' % threading.currentThread()) return "It's done", seq loop = asyncio.get_event_loop() task1 = loop.create_task(hello(2)) task2 = loop.create_task(hello(1)) task_list = [task1, task2] tasks = asyncio.wait(task_list) loop.run_until_complete(tasks) for t in task_list: print(t.result())
结果:
Hello Python! (<_MainThread(MainThread, started 12956)>) Hello Python! (<_MainThread(MainThread, started 12956)>) Hello Python again! (<_MainThread(MainThread, started 12956)>) Hello Python again! (<_MainThread(MainThread, started 12956)>) ("It's done", 2) ("It's done", 1)