m基于yolov2深度学习的细胞检测系统matlab仿真,带GUI操作界面

1.算法仿真效果

matlab2022a仿真结果如下:

 

 

2.算法涉及理论知识概要

       基于YOLOv2的细胞检测系统是一种利用深度学习技术,特别是卷积神经网络(CNN),对显微镜图像中的细胞进行自动定位和识别的计算机视觉应用。YOLOYou Only Look Once)是一种单阶段的目标检测算法,其第二版(YOLOv2)在原版的基础上进行了诸多改进,提高了检测精度和速度。YOLOv2采用了Darknet-19作为其主干网络,这是一种深度残差网络(ResNet)变体,由19个卷积层组成。网络结构如下:

 

 

 

 

YOLOv2在主干网络Darknet-19的基础上,通过以下方式实现多尺度特征提取和预测:

 

空间金字塔池化(SPP):在主干网络后添加一个空间金字塔池化层,提取不同尺度的特征,增强模型对不同大小细胞的检测能力。SPP通过在不同大小的网格上进行最大池化操作,生成多尺度特征图。

 

特征金字塔网络(FPN):YOLOv2通过上采样主干网络的深层特征并与浅层特征融合,构建特征金字塔,实现多尺度目标检测。

 

3.MATLAB核心程序

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
sidx             = randperm(size(FACES,1));% 打乱数据集索引
idx              = floor(0.75 * length(sidx));% 将75%的数据用作训练集
train_data       = FACES(sidx(1:idx),:);% 选取训练集
test_data        = FACES(sidx(idx+1:end),:);% 选取测试集
% 图像大小
image_size       = [224 224 3];
num_classes      = size(FACES,2)-1;% 目标类别数量
anchor_boxes = [% 预定义的锚框大小
    43 59
    18 22
    23 29
    84 109
    ];
% 加载预训练的 ResNet-50 模型
load mat\Resnet50.mat
  
% 用于目标检测的特征层
featureLayer = 'activation_40_relu';
% 构建 YOLOv2 网络
lgraph       = yolov2Layers(image_size,num_classes,anchor_boxes,Initial_nn,featureLayer);
  
options = trainingOptions('sgdm', ...
    'MiniBatchSize', 8, ....
    'InitialLearnRate',1e-4, ...
    'MaxEpochs',200,...
    'CheckpointPath', Folder, ...
    'Shuffle','every-epoch', ...
    'ExecutionEnvironment', 'gpu');% 设置训练选项
% 训练 YOLOv2 目标检测器
[detector,info] = trainYOLOv2ObjectDetector(train_data,lgraph,options);
  
  
  
  
save model.mat detector

 

  

 

posted @   我爱C编程  阅读(14)  评论(0编辑  收藏  举报
(评论功能已被禁用)
相关博文:
阅读排行:
· 为DeepSeek添加本地知识库
· 精选4款基于.NET开源、功能强大的通讯调试工具
· DeepSeek智能编程
· 大模型工具KTransformer的安装
· [计算机/硬件/GPU] 显卡
历史上的今天:
2023-04-17 基于小波变换的数据峰值检测matlab仿真
2023-04-17 基于免疫遗传优化的图像分割算法matlab仿真
2023-04-17 基于FNN模糊神经网络的控制器解耦控制matlab仿真
2023-04-17 m规则LDPC和非规则LDPC误码率matlab对比仿真,并对比不同译码迭代次数的误码率
点击右上角即可分享
微信分享提示