密码工程-扩展欧几里得算法
0. 在openEuler(推荐)或Ubuntu或Windows(不推荐)中完成下面任务 1. 参考《密码工程》p112伪代码实现ExtendedGCD(int a, int b, int *k, int *u, int *v)算法(10’) 2. 在测试代码中计算74模167的逆。(5‘) 3. 提交代码和运行结果截图
伪代码
- 置x = 1, g = a, v = 0 与 w = b
- 如果w = 0,则置y = (g - ax)/b,并返回值(g, x, y)
- g除以w得余数t,g = qw + t
- 置s = x - qv
- 置(x, g) = (v, w)
- 置(v, w) = (s, t)
- 转到第2步
算法实现
#include <stdio.h> //这里用了int类型,所支持的整数范围较小且本程序仅支持非负整数,可能缺乏实际用途,仅供演示。 struct EX_GCD { //s,t是裴蜀等式中的系数,gcd是a,b的最大公约数 int s; int t; int gcd; }; struct EX_GCD extended_euclidean(int a, int b) { struct EX_GCD ex_gcd; if (b == 0) { //b等于0时直接结束求解 ex_gcd.s = 1; ex_gcd.t = 0; ex_gcd.gcd = 0; return ex_gcd; } int old_r = a, r = b; int old_s = 1, s = 0; int old_t = 0, t = 1; while (r != 0) { //按扩展欧几里得算法进行循环 int q = old_r / r; int temp = old_r; old_r = r; r = temp - q * r; temp = old_s; old_s = s; s = temp - q * s; temp = old_t; old_t = t; t = temp - q * t; } ex_gcd.s = old_s; ex_gcd.t = old_t; ex_gcd.gcd = old_r; return ex_gcd; } int main(void) { int a, b; printf("Please input two integers divided by a space.\n"); scanf("%d%d", &a, &b); if (a < b) { //如果a小于b,则交换a和b以便后续求解 int temp = a; a = b; b = temp; } struct EX_GCD solution = extended_euclidean(a, b); printf("%d*%d+%d*%d=%d\n", solution.s, a, solution.t, b, solution.gcd); return 0; }
计算74模167的逆