摘要: ROC 、AUC ROC曲线是评价学习器泛化能力的指标,他纵轴是“真正例率”(TPR),横轴是“假正例率”(FPR),需要FPR越小,TPR越高,则模型越好 TPR = TP / (TP + FN) 可以理解为模型对正例的灵敏度 FPR = FP / (TN + FP) 可以理解为模型对负例的特异度 阅读全文
posted @ 2021-08-19 22:35 女贞路4号 阅读(749) 评论(0) 推荐(0) 编辑