密度聚类

聚类算法可以划分为三大类,第一类是kmeans、DBSCAN、Density Peaks 依据密度的聚类方式;第二类是类似于层次聚类的依据树状结构的聚类方式;第三类是谱聚类,依据图谱结构的聚类方式.。

DBSCAN

DBSCAN是一种密度聚类,他不要求指定聚类中心数量,能够避免异常值,对非球形的形状也可以聚起来,这些都是kmeans做不到的。DBSCAN依赖两个参数进行聚类:

$\varepsilon $ 半径。用于扩展簇时的搜索半径范围

minPts 最小点。用于扩展簇时判定是否将点纳入簇内

算法的流程如下

  1. 初始化:选取一个点,要求该点在$\varepsilon $ 半径范围内拥有至少minPts个点(包括该点本身),这个点被记为核心点
  2. 遍历在核心点半径内的其他点。如果其他点的$\varepsilon $ 半径范围内,同样具有至少minPts个点,那么同样记该点为核心点;如果这个点半径内没有minPts个点,则记这个点为边界点。
  3. 重复第2步,直到选完所有核心点和边界点

 

如何确定最优$\varepsilon $?用不同的$\varepsilon $计算每个点到半径内邻居的平均距离,将他们画在图上,y轴表示平均距离,x轴表示半径,用手肘法,找到手肘的位置,则为$\varepsilon $的合适取值

如何确定最优minPts?通常设置minPts为数据的维度的1到2倍。

 

 

Density Peaks

Density Peaks 又叫峰值密度聚类,局部密度聚类。它的聚类基于两点假设:1、簇中心的局部密度要大于围绕他的点的局部密度。2、不同簇中心距离较远。

$\rho_{i}$ 局部密度。给定$d_{ij}$表示ij两点之间的距离,设置超参数$d_{c}$,点i的局部密度$\rho_{i}$,是所有$d_{ij}<d_{c}$  的点的个数。

$\delta_{i}$ 聚类中心距离。确定每个点的聚类中心距离,分为两种情况:

  1. 密度最大的点的聚类中心距离,等于距离i点最远的点n的直线距离$d_{in}$。
  2. 其他点的中心距离,等于所有密度大于自身的点中,距离最近的点的直线距离。
  3. 最后需要做归一化处理,距离最大的点(也就是密度最大的点),它的距离定为1

当有了$\rho_{i}$  和 $\delta_{i}$ 后,将密度和距离分别作为横轴和纵轴绘制出二维决策图

看右侧的图,右上角区域的是聚类的核心点,它的密度大,且距离其他的核心点比较远。右下角虽然密度大,但是周围也有很多密度大的点,距离比较近,不适合做聚类中心。左上角的点密度小,距离其他点也远,属于孤立点,不适合做聚类中心。 

应用中,可以用$\rho_{i} * \delta_{i}$ 排序,选取前K个点作为中心点。

posted @ 2023-09-16 15:23  女贞路4号  阅读(101)  评论(0编辑  收藏  举报