HTTP协议版本区别

HTTP协议版本区别

一、HTTP协议版本更替

HTTP/0.9

        HTTP协议的最初版本,功能简陋,仅支持请求方式GET,并且仅能请求访问HTML格式的资源

HTTP/1.0    

请求行必须在尾部添加协议版本字段(http/1.0);必须包含头消息        

在0.9版本上做了进步,增加了请求方式POST和HEAD;不再局限于0.9版本的HTML格式,根据Content-Type可以支持多种数据格式,即MIME多用途互联网邮件扩展,例如text/html、image/jpeg等;同时也开始支持cache,就是客户端在规定时间内访问统一网站,直接访问cache即可。

再次,HTTP请求和回应的格式也变了。除了数据部分,每次通信都必须包括头信息(HTTP header),用来描述一些元数据。

其他的新增功能还包括状态码(status code)、多字符集支持、多部分发送(multi-part type)、权限(authorization)、缓存(cache)、内容编码(content encoding)等。

        但是1.0版本的工作方式是每次TCP连接只能发送一个请求,当服务器响应后就会关闭这次连接,下一个请求需要再次建立TCP连接,就是不支持keepalive

        TCP连接的新建成本很高,因为需要客户端和服务器三次握手,并且开始时发送速率较慢(slow start)。所以,HTTP 1.0版本的性能比较差。随着网页加载的外部资源越来越多,这个问题就愈发突出了。

为了解决这个问题,有些浏览器在请求时,用了一个非标准的Connection字段

  1. Connection: keep-alive

这个字段要求服务器不要关闭TCP连接,以便其他请求复用。服务器同样回应这个字段。

  1. Connection: keep-alive

一个可以复用的TCP连接就建立了,直到客户端或服务器主动关闭连接。但是,这不是标准字段,不同实现的行为可能不一致,因此不是根本的解决办法。

Content-Type 字段

关于字符的编码,1.0版规定,头信息必须是 ASCII 码,后面的数据可以是任何格式。因此,服务器回应的时候,必须告诉客户端,数据是什么格式,这就是Content-Type字段的作用。

下面是一些常见的Content-Type字段的值。

  • text/plain
  • text/html
  • text/css
  • image/jpeg
  • image/png
  • image/svg+xml
  • audio/mp4
  • video/mp4
  • application/javascript
  • application/pdf
  • application/zip
  • application/atom+xml

这些数据类型总称为MIME type,每个值包括一级类型和二级类型,之间用斜杠分隔。

除了预定义的类型,厂商也可以自定义类型。

  1. application/vnd.debian.binary-package

上面的类型表明,发送的是Debian系统的二进制数据包。

MIME type还可以在尾部使用分号,添加参数。

  1. Content-Type: text/html; charset=utf-8

上面的类型表明,发送的是网页,而且编码是UTF-8。

客户端请求的时候,可以使用Accept字段声明自己可以接受哪些数据格式。

  1. Accept: */*

上面代码中,客户端声明自己可以接受任何格式的数据。

MIME type不仅用在HTTP协议,还可以用在其他地方,比如HTML网页。

  1. <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
  2. <!-- 等同于 -->
  3. <meta charset="utf-8" />

Content-Encoding 字段

由于发送的数据可以是任何格式,因此可以把数据压缩后再发送。Content-Encoding字段说明数据的压缩方法。

  1. Content-Encoding: gzip
  2. Content-Encoding: compress
  3. Content-Encoding: deflate

客户端在请求时,用Accept-Encoding字段说明自己可以接受哪些压缩方法。

  1. Accept-Encoding: gzip, deflate

HTTP/1.1    

1.1 版的最大变化,就是引入了持久连接(persistent connection),即TCP连接默认不关闭,可以被多个请求复用,不用声明Connection: keep-alive解决了1.0版本的keepalive问题,1.1版本加入了持久连接一个TCP连接可以允许多个HTTP请求

客户端和服务器发现对方一段时间没有活动,就可以主动关闭连接。不过,规范的做法是,客户端在最后一个请求时,发送Connection: close,明确要求服务器关闭TCP连接。

  1. Connection: close

目前,对于同一个域名,大多数浏览器允许同时建立6个持久连接。降低了延迟同时提高了带宽的利用率。

    

加入了管道机制,在同一个TCP连接里,允许多个请求同时发送,增加了并发性,进一步改善了HTTP协议的效率;举例来说,客户端需要请求两个资源。以前的做法是,在同一个TCP连接里面,先发送A请求,然后等待服务器做出回应,收到后再发出B请求。管道机制则是允许浏览器同时发出A请求和B请求,但是服务器还是按照顺序,先回应A请求,完成后再回应B请求。

Content-Length 字段

一个TCP连接现在可以传送多个回应,势必就要有一种机制,区分数据包是属于哪一个回应的。这就是Content-length字段的作用,声明本次回应的数据长度。

  1. Content-Length: 3495

上面代码告诉浏览器,本次回应的长度是3495个字节,后面的字节就属于下一个回应了。

在1.0版中,Content-Length字段不是必需的,因为浏览器发现服务器关闭了TCP连接,就表明收到的数据包已经全了。

分块传输编码

使用Content-Length字段的前提条件是,服务器发送回应之前,必须知道回应的数据长度。

对于一些很耗时的动态操作来说,这意味着,服务器要等到所有操作完成,才能发送数据,显然这样的效率不高。更好的处理方法是,产生一块数据,就发送一块,采用"流模式"(stream)取代"缓存模式"(buffer)。

因此,1.1版规定可以不使用Content-Length字段,而使用"分块传输编码"(chunked transfer encoding)。只要请求或回应的头信息有Transfer-Encoding字段,就表明回应将由数量未定的数据块组成。

  1. Transfer-Encoding: chunked

每个非空的数据块之前,会有一个16进制的数值,表示这个块的长度。最后是一个大小为0的块,就表示本次回应的数据发送完了。下面是一个例子。

  1. HTTP/1.1 200 OK
  2. Content-Type: text/plain
  3. Transfer-Encoding: chunked
  4. 25
  5. This is the data in the first chunk
  6. 1C
  7. and this is the second one
  8. 3
  9. con
  10. 8
  11. sequence
  12. 0

新增了请求方式PUT、PATCH、OPTIONS、DELETE等

另外,客户端请求的头信息新增了Host字段,用来指定服务器的域名。在HTTP1.0中认为每台服务器都绑定一个唯一的IP地址,因此,请求消息中的URL并没有传递主机名(hostname)。但随着虚拟主机技术的发展,在一台物理服务器上可以存在多个虚拟主机(Multi-homed Web Servers),并且它们共享一个IP地址。

  1. Host: www.example.com

有了Host字段,就可以将请求发往同一台服务器上的不同网站,为虚拟主机的兴起打下了基础。(实现了在一台WEB服务器上可以在同一个IP地址和端口号上使用不同的主机名来创建多个虚拟WEB站点。也即是说,web server上的多个虚拟站点可以共享同一个ip和端口。)且请求消息中如果没有Host头域会报告一个错误(400 Bad Request)。

        虽然1.1版允许复用TCP连接,但是同一个TCP连接里面,所有的数据通信是按次序进行的。服务端是按队列顺序处理请求的,服务器只有处理完一个回应,才会进行下一个回应。假如前面的请求处理时间很长,后面就会有许多请求排队等着,这样就造成了“队头阻塞”的问题;同时HTTP是无状态的连接,因此每次请求都需要添加重复的字段,降低了带宽的利用率。

多路复用带来一个新的问题是,在连接共享的基础之上有可能会导致关键请求被阻塞。SPDY允许给每个request设置优先级,这样重要的请求就会优先得到响应。比如浏览器加载首页,首页的html内容应该优先展示,之后才是各种静态资源文件,脚本文件等加载,这样可以保证用户能第一时间看到网页内容。

为了避免这个问题,只有两种方法:一是减少请求数,二是同时多开持久连接。这导致了很多的网页优化技巧,比如合并脚本和样式表、将图片嵌入CSS代码、域名分片(domain sharding)等等。如果HTTP协议设计得更好一些,这些额外的工作是可以避免的。

100(Continue) Status(节约带宽)

HTTP/1.1加入了一个新的状态码100Continue)。客户端事先发送一个只带头域的请求,如果服务器因为权限拒绝了请求,就回送响应码401(Unauthorized);如果服务器接收此请求就回送响应码100,客户端就可以继续发送带实体的完整请求了。100 (Continue) 状态代码的使用,允许客户端在发request消息body之前先用request header试探一下server,看server要不要接收request body,再决定要不要发request body。

HTTP/1.1在1.0的基础上加入了一些cache的新特性,当缓存对象的Age超过Expire时变为stale对象,cache不需要直接抛弃stale对象,而是与源服务器进行重新激活(revalidation)。

HTTP 1.1支持只发送header信息(不带任何body信息),如果服务器认为客户端有权限请求服务器,则返回100,否则返回401。客户端如果接受到100,才开始把请求body发送到服务器。这样当服务器返回401的时候,客户端就可以不用发送请求body了,节约了带宽。

HTTP1.1还有身份认证机制,许多web站点要求用户提供一个用户名—口令对才能访问存放在其服务器中的文档,这种要求称为身份认证(authentication)。HTTP提供特殊的状态码和头部来帮助Web站点执行身份认证。

HTTP支持传送内容的一部分。这样当客户端已经有一部分的资源后,只需要跟服务器请求另外的部分资源即可。这是支持文件断点续传的基础。

HTTP/1.1支持文件断点续传RANGE:bytes,HTTP/1.0每次传送文件都是从文件头开始,即0字节处开始。RANGE:bytes=XXXX表示要求服务器从文件XXXX字节处开始传送,断点续传。即返回码是206(Partial Content)

在HTTP1.1中新增了24个错误状态响应码,如409(Conflict)表示请求的资源与资源的当前状态发生冲突;410(Gone)表示服务器上的某个资源被永久性的删除。

HTTP/2.0

        为了解决1.1版本利用率不高的问题,提出了HTTP/2.0版本。增加双工模式,即不仅客户端能够同时发送多个请求,服务端也能同时处理多个请求,解决了队头堵塞的问题(HTTP2.0使用了多路复用的技术,做到同一个连接并发处理多个请求,而且并发请求的数量比HTTP1.1大了好几个数量级;HTTP请求和响应中,状态行和请求/响应头都是些信息字段,并没有真正的数据,因此在2.0版本中将所有的信息字段建立一张表,为表中的每个字段建立索引,客户端和服务端共同使用这个表,他们之间就以索引号来表示信息字段,这样就避免了1.0旧版本的重复繁琐的字段,并以压缩的方式传输,提高利用率。

        另外也增加服务器推送的功能,即不经请求服务端主动向客户端发送数据

当前主流的协议版本还是HTTP/1.1版本。

二进制协议

HTTP/1.1 版的头信息肯定是文本(ASCII编码),数据体可以是文本,也可以是二进制。HTTP/2 则是一个彻底的二进制协议,头信息和数据体都是二进制,并且统称为"帧"(frame):头信息帧和数据帧。

二进制协议的一个好处是,可以定义额外的帧。HTTP/2 定义了近十种帧,为将来的高级应用打好了基础。如果使用文本实现这种功能,解析数据将会变得非常麻烦,二进制解析则方便得多。

多工

HTTP/2 复用TCP连接,在一个连接里,客户端和浏览器都可以同时发送多个请求或回应,而且不用按照顺序一一对应,这样就避免了"队头堵塞"。

举例来说,在一个TCP连接里面,服务器同时收到了A请求和B请求,于是先回应A请求,结果发现处理过程非常耗时,于是就发送A请求已经处理好的部分, 接着回应B请求,完成后,再发送A请求剩下的部分。

这样双向的、实时的通信,就叫做多工(Multiplexing)。

数据流

因为 HTTP/2 的数据包是不按顺序发送的,同一个连接里面连续的数据包,可能属于不同的回应。因此,必须要对数据包做标记,指出它属于哪个回应。

HTTP/2 将每个请求或回应的所有数据包,称为一个数据流(stream)。每个数据流都有一个独一无二的编号。数据包发送的时候,都必须标记数据流ID,用来区分它属于哪个数据流。另外还规定,客户端发出的数据流,ID一律为奇数,服务器发出的,ID为偶数。

数据流发送到一半的时候,客户端和服务器都可以发送信号(RST_STREAM帧),取消这个数据流。1.1版取消数据流的唯一方法,就是关闭TCP连接。这就是说,HTTP/2 可以取消某一次请求,同时保证TCP连接还打开着,可以被其他请求使用。

客户端还可以指定数据流的优先级。优先级越高,服务器就会越早回应。

头信息压缩

HTTP 协议不带有状态,每次请求都必须附上所有信息。所以,请求的很多字段都是重复的,比如CookieUser Agent,一模一样的内容,每次请求都必须附带,这会浪费很多带宽,也影响速度。

HTTP/2 对这一点做了优化,引入了头信息压缩机制(header compression)。一方面,头信息使用gzipcompress压缩后再发送;另一方面,客户端和服务器同时维护一张头信息表,所有字段都会存入这个表,生成一个索引号,以后就不发送同样字段了,只发送索引号,这样就提高速度了。

服务器推送

HTTP/2 允许服务器未经请求,主动向客户端发送资源,这叫做服务器推送(server push)。

意思是说,当我们对支持HTTP2.0的web server请求数据的时候,服务器会顺便把一些客户端需要的资源一起推送到客户端,免得客户端再次创建连接发送请求到服务器端获取。这种方式非常合适加载静态资源

服务器端推送的这些资源其实存在客户端的某处地方,客户端直接从本地加载这些资源就可以了,不用走网络,速度自然是快很多的。

常见场景是客户端请求一个网页,这个网页里面包含很多静态资源。正常情况下,客户端必须收到网页后,解析HTML源码,发现有静态资源,再发出静态资源请求。其实,服务器可以预期到客户端请求网页后,很可能会再请求静态资源,所以就主动把这些静态资源随着网页一起发给客户端了。

服务端推送把客户端所需要的资源伴随着index.html一起发送到客户端,省去了客户端重复请求的步骤。正因为没有发起请求,建立连接等操作,所以静态资源通过服务端推送的方式可以极大地提升速度。

HTTP 性能优化的关键并不在于高带宽,而是低延迟。TCP 连接会随着时间进行自我「调谐」,起初会限制连接的最大速度,如果数据成功传输,会随着时间的推移提高传输的速度。这种调谐则被称为 TCP 慢启动(拥塞控制)。由于这种原因,让原本就具有突发性和短时性的 HTTP 连接变的十分低效。
HTTP/2 通过让所有数据流共用同一个连接,可以更有效地使用 TCP 连接,让高带宽也能真正的服务于 HTTP 的性能提升。

二、HTTP响应模型

        服务器收到HTTP请求之后,会有多种方法响应这个请求,下面是HTTP响应的四种模型:

        单进程I/O模型

服务端开启一个进程,一个进程仅能处理一个请求,并且对请求顺序处理;

        多进程I/O模型

服务端并行开启多个进程,同样的一个进程只能处理一个请求,这样服务端就可以同时处理多个请求;

        复用I/O模型

服务端开启一个进程,但是呢,同时开启多个线程,一个线程响应一个请求,同样可以达到同时处理多个请求,线程间并发执行;

        复用多线程I/O模型

服务端并行开启多个进程,同时每个进程开启多个线程,这样服务端可以同时处理进程数M*每个进程的线程数N个请求。

 

 


转载:https://blog.csdn.net/qq_22238021

posted @ 2022-03-21 21:05  HammerZe  阅读(116)  评论(0编辑  收藏  举报