zookeeper原理之选举流程分析

前面分析这么多,还没有正式分析到 leader 选举的核心流程,前期准备工作做好了以后,接下来就开始正式分析 leader 选举的过程:
1
2
3
4
5
6
public synchronized void start() {
     loadDataBase();
     cnxnFactory.start();
     startLeaderElection();
     super.start(); //启动线程
}
很明显,super.start() 表示当前类 QuorumPeer 继承了线程,线程必须要重写 run 方法,所以我们可以在 QuorumPeer 中找到一个 run 方法。
 
QuorumPeer.run
这段代码的逻辑比较长。粗略看一下结构,好像也不难
PeerState 有几种状态,分别是
  1. LOOKING,竞选状态。
  2. FOLLOWING,随从状态,同步 leader 状态,参与投票。
  3. OBSERVING,观察状态,同步 leader 状态,不参与投票。
  4. LEADING,领导者状态。
对于选举来说,默认都是 LOOKING 状态,只有 LOOKING 状态才会去执行选举算法。每个服务器在启动时都会选择自己做为领导,然后将投票信息发送出去,循环一直到选举出领导为止。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
@Override
    public void run() {
        setName("QuorumPeer" + "[myid=" + getId() + "]" + cnxnFactory.getLocalAddress());
        // … 根据选举状态,选择不同的处理方式
        while (running) {
            switch (getPeerState()) {
            case LOOKING:
                LOG.info("LOOKING");
                // 判断是否为只读模式,通过”readonlymode.enabled”开 启
                if (Boolean.getBoolean("readonlymode.enabled")) {
                    // 只读模式的启动流程
                } else {
                    try {
                        setBCVote(null);
                        // 设置当前的投票,通过策略模式来决定当前用哪个选举算法来进行领导选举
 
                        setCurrentVote(makeLEStrategy().lookForLeader());
                    } catch (Exception e) {
                        LOG.warn("Unexpected exception", e);
                        setPeerState(ServerState.LOOKING);
                    }
                }
                break;
            // …后续逻辑暂时不用管
            }
        }
    }
FastLeaderElection.lookForLeader
开始发起投票流程
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
public Vote lookForLeader() throws InterruptedException {
        try {
            HashMap<Long, Vote> recvset = new HashMap<Long, Vote>();
            HashMap<Long, Vote> outofelection = new HashMap<Long, Vote>();
            int notTimeout = finalizeWait;
            synchronized(this){
                logicalclock.incrementAndGet();//更新逻辑时钟,用来判断是否在同一轮选举周期
                //初始化选票数据:这里其实就是把当前节点的 myid,zxid,epoch 更新到本地的成员属性
                updateProposal(getInitId(), getInitLastLoggedZxid(), getPeerEpoch());
            }
            LOG.info("New election. My id = " + self.getId() + ", proposed zxid=0x" + Long.toHexString(proposedZxid));
            sendNotifications();//异步发送选举信息
            /*
             * Loop in which we exchange notifications until we find a leader
             */
            //这里就是不断循环,根据投票信息进行进行 leader 选举
            while ((self.getPeerState() == ServerState.LOOKING) && (!stop)){
                /*
                 * Remove next notification from queue, timesout after 2 times
                 * the termination time
                 */
                //从 recvqueue 中获取消息
                Notification n = recvqueue.poll(notTimeout,TimeUnit.MILLISECONDS);
                /*
                 * Sends more notifications if haven't received enough.
                 * Otherwise processes new notification.
                 */
                if(n == null){ //如果没有获取到外部的投票,有可能是集群之间的节点没有真正连接上
                        if(manager.haveDelivered()){//判断发送队列是否有数据,如果发送队列为空,再发一次自己的选票
                            sendNotifications();
                        } else {//在此发起集群节点之间的连接
                            manager.connectAll();
                        }
                        /*
                         * Exponential backoff
                         */
                        int tmpTimeOut = notTimeout*2;
                        notTimeout = (tmpTimeOut < maxNotificationInterval? tmpTimeOut : maxNotificationInterval);
                        LOG.info("Notification time out: " + notTimeout);
                    }
                }
            }
    }
选票的判断逻辑(核心代码)
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
// 判断收到的选票中的 sid 和选举的 leader 的 sid 是否存在于我们集群所配置的 myid 范围
        if (validVoter(n.sid) && validVoter(n.leader)) {
            // 判断接收到的投票者的状态,默认是 LOOKING 状态,说明当前发起投票的服务器也是在找 leader
            switch (n.state) {
            case LOOKING: // 说明当前发起投票的服务器也是在找 leader
                // 如果收到的投票的逻辑时钟大于当前的节点的逻辑时钟
                if (n.electionEpoch > logicalclock.get()) {
                    logicalclock.set(n.electionEpoch);// 更新成新一轮的逻辑时钟
                    recvset.clear();
                    // 比较接收到的投票和当前节点的信息进行比较,比较的顺序epoch、zxid、myid,如果返回
                    // true,则更新当前节点的票据(sid,zxid,epoch),那么下次再发起投票的时候,就不再是选自己了
                    if (totalOrderPredicate(n.leader, n.zxid, n.peerEpoch, getInitId(), getInitLastLoggedZxid(),
                            getPeerEpoch())) {
                        updateProposal(n.leader, n.zxid, n.peerEpoch);
                    } else {// 否则,说明当前节点的票据优先级更高,再次更新自己的票据
                        updateProposal(getInitId(), getInitLastLoggedZxid(), getPeerEpoch());
                    }
                    sendNotifications();// 再次发送消息把当前的票据发出去
                } else if (n.electionEpoch < logicalclock.get()) {// 如果小于,说明收到的票据已经过期了,直接把这张票丢掉
                    if (LOG.isDebugEnabled()) {
                        LOG.debug("Notification election epoch is smaller than logicalclock. n.electionEpoch = 0x"
                                + Long.toHexString(n.electionEpoch) + ", logicalclock=0x"
                                + Long.toHexString(logicalclock.get()));
                    }
                    break; // 这个判断表示收到的票据的 epoch 是相同的,那么按照 epoch、zxid、myid
                            // 顺序进行比较比较成功以后,把对方的票据信息更新到自己的节点
                } else if (totalOrderPredicate(n.leader, n.zxid, n.peerEpoch, proposedLeader, proposedZxid,
                        proposedEpoch)) {
                    updateProposal(n.leader, n.zxid, n.peerEpoch);
                    sendNotifications();// 把收到的票据再发出去告诉大家我要选 n.leader 为 leader
                }
                if (LOG.isDebugEnabled()) {
                    LOG.debug("Adding vote: from=" + n.sid + ", proposed leader=" + n.leader + ", proposed zxid=0x"
                            + Long.toHexString(n.zxid) + ", proposed election epoch=0x"
                            + Long.toHexString(n.electionEpoch));
                }
                // 将收到的投票信息放入投票的集合 recvset 中, 用来作为最终的 "过半原则" 判断
                recvset.put(n.sid, new Vote(n.leader, n.zxid, n.electionEpoch, n.peerEpoch));
                // 判断选举是否结束
                if (termPredicate(recvset, new Vote(proposedLeader, proposedZxid, logicalclock.get(), proposedEpoch))) {
                    // 进入这个判断,说明选票达到了 leader 选举的要求
                    // 在更新状态之前,服务器会等待 finalizeWait 毫秒时间来接收新的选票,以防止漏下关键选票如果收到可能改变
                    // Leader 的新选票,则重新进行计票
                    while ((n = recvqueue.poll(finalizeWait, TimeUnit.MILLISECONDS)) != null) {
                        if (totalOrderPredicate(n.leader, n.zxid, n.peerEpoch, proposedLeader, proposedZxid,
                                proposedEpoch)) {
                            recvqueue.put(n);
                            break;
                        }
                    }
                    // 如果 notifaction 为空,说明 Leader 节点是可以确定好了
                    if (n == null) {
                        // 设置当前当前节点的状态(判断 leader 节点是不是我自己,如果是,直接更新当前节点的 state 为
                        // LEADING)否则,根据当前节点的特性进行判断,决定是FOLLOWING 还是 OBSERVING
                        self.setPeerState((proposedLeader == self.getId()) ? ServerState.LEADING : learningState());
                        // 组装生成这次 Leader 选举最终的投票的结果
                        Vote endVote = new Vote(proposedLeader, proposedZxid, logicalclock.get(), proposedEpoch);
                        leaveInstance(endVote);// 清空
                        return endVote; // 返回最终的票据
                    }
                }
                break;
            case OBSERVING:// OBSERVING 不参与 leader 选举
                LOG.debug("Notification from observer: " + n.sid);
                break;
            case FOLLOWING:
            case LEADING:
                /*
                 * Consider all notifications from the same epoch together.
                 */
                if (n.electionEpoch == logicalclock.get()) {
                    recvset.put(n.sid, new Vote(n.leader, n.zxid, n.electionEpoch, n.peerEpoch));
 
                    if (ooePredicate(recvset, outofelection, n)) {
                        self.setPeerState((n.leader == self.getId()) ? ServerState.LEADING : learningState());
                        Vote endVote = new Vote(n.leader, n.zxid, n.electionEpoch, n.peerEpoch);
                        leaveInstance(endVote);
                        return endVote;
                    }
                }
                /*
                 * Before joining an established ensemble, verify a majority is
                 * following the same leader.
                 */
                outofelection.put(n.sid, new Vote(n.version, n.leader, n.zxid, n.electionEpoch, n.peerEpoch, n.state));
                if (ooePredicate(outofelection, outofelection, n)) {
                    synchronized (this) {
                        logicalclock.set(n.electionEpoch);
                        self.setPeerState((n.leader == self.getId()) ? ServerState.LEADING : learningState());
                    }
                    Vote endVote = new Vote(n.leader, n.zxid, n.electionEpoch, n.peerEpoch);
                    leaveInstance(endVote);
                    return endVote;
                }
                break;
            default:
                LOG.warn("Notification state unrecognized: {} (n.state), {} (n.sid)", n.state, n.sid);
                break;
            }
        }
投票处理的流程图
termPredicate
这个方法是使用过半原则来判断选举是否结束,如果返回 true,说明能够选出 leader 服务器votes 表示收到的外部选票的集合vote 表示但前服务器的选票。
1
2
3
4
5
6
7
8
9
10
11
protected boolean termPredicate(HashMap<Long, Vote> votes, Vote vote) {
        HashSet<Long> set = new HashSet<Long>();
        // 遍历接收到的所有选票数据
        for (Map.Entry<Long, Vote> entry : votes.entrySet()) {
            // 对选票进行归纳,就是把所有选票数据中和当前节点的票据相同的票据进行统计
            if (vote.equals(entry.getValue())) {
                set.add(entry.getKey());
            }
        } // 对选票进行判断
        return self.getQuorumVerifier().containsQuorum(set);
    }
QuorumMaj. containsQuorum
判断当前节点的票数是否是大于一半,默认采用 QuorumMaj 来实现。
1
2
3
public boolean containsQuorum(Set<Long> set){
     return (set.size() > half);
}
这个 half 的值是多少呢?
可以在 QuorumPeerConfig.parseProperties 这个方法中,找到如下代码。
也就是说,在构建 QuorumMaj 的时候,传递了当前集群节点的数量,这里是 3那么,hafl=3/2=1
1
2
3
public QuorumMaj(int n){
     this.half = n/2;
}
那么 set.size()>1. 意味着至少要有两个节点的票据是选择你当 leader,否则,还得继续投。
posted @   47号Gamer丶  阅读(200)  评论(0编辑  收藏  举报
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· AI 智能体引爆开源社区「GitHub 热点速览」
· 写一个简单的SQL生成工具
点击右上角即可分享
微信分享提示