蓝桥杯算法提高 P1001(大数乘法)

                  算法提高 P1001  
          时间限制:1.0s   内存限制:256.0MB  
  
  当两个比较大的整数相乘时,可能会出现数据溢出的情形。为避免溢出,可以采用字符串的方法来实现两个大数之间的乘法。
  具体来说,首先以字符串的形式输入两个整数,每个整数的长度不会超过8位,然后把它们相乘的结果存储在另一个字符串当中
  (长度不会超过16位),最后把这个字符串打印出来。
  例如,假设用户输入为:62773417和12345678,则输出结果为:774980393241726.

    输入:
      62773417 12345678

    输出:
      774980393241726
 
 
  如果只是为了应付OJ系统的判分直接利用 分治乘法 配合long long int 输出 即可解决
  
 1 #include "stdio.h"
 2 #include "math.h"
 3 int main()
 4 {
 5     long long int S;        //long long int 长度远大于题目要求的16位之内
 6     int n=0,i,j,k1,k2,L1,L2,A,B,C,D,m1,m2,m3,p,q;
 7     scanf("%d",&p); 
 8     scanf("%d",&q);
 9     if(p>q)
10         j=p;
11     else
12         j=q;
13     while(j!=0)
14     {
15         j=j/10;
16         n++;
17     }                  //此处计算最长数字的长度
18     L1=L2=n/2;
19     for(i=0,k1=p;i<L1;i++)
20     {
21         k1=k1/10;
22     }
23     A=k1;
24     for(i=0;i<L1;i++)
25     {
26         k1=k1*10;
27     }
28     B=p-k1;
29 
30     for(i=0,k2=q;i<L2;i++)
31     {
32         k2=k2/10;
33     }
34     C=k2;
35     for(i=0;i<L2;i++)
36     {
37         k2=k2*10;
38     }
39     D=q-k2;
40 
41     m1=A*C;
42     m2=(A-B)*(D-C);
43     m3=B*D;
44     S=(m1*pow(10,n)+(m1+m2+m3)*pow(10,n/2)+m3);//题目以十进制数为主故采用pow(10,x)同理可换成其他进制
45     printf("%lld\n",S);
46     return 0;
47  } 

 

判分结果:

大整数乘法原理简单来说就是把长数字拆分(此处为十进制)

即可得出 X=A*10n/2+B ,Y=C*10n/2+D

再推算得X*Y=AC*10n+[(A-B)(D-C)+AC+BD]*10n/2+BD

 

蓝桥练习系统的样例数据如下:

No.      input           output

1.    7563975 985872    7457111161200

2.  74863517 5896712    441448599056104

3.    658942 98541      64932803622

4.  96574832 54789216   5291259330611712

5.  32514689 25478691   828431713992099

6.      123 0          0  

posted @ 2016-03-17 00:17  4770K  阅读(1455)  评论(0编辑  收藏  举报