实验三 进程调度模拟程序

                                                    实验三     进程调度模拟程序

                                               物联网工程  201306104144   吴容芝

1. 目的和要求

实验目的

用高级语言完成一个进程调度程序,以加深对进程的概念及进程调度算法的理解。

实验要求

设计一个有 N(N不小于5)个进程并发执行的进程调度模拟程序。

进程调度算法:“时间片轮转法”调度算法对N个进程进行调度。  

2. 实验内容

完成两个算法(简单时间片轮转法、多级反馈队列调度算法)的设计、编码和调试工作,完成实验报告。 

1) 每个进程有一个进程控制块(PCB)表示。进程控制块包含如下信息:进程名、优先级、到达时间、需要运行时间、已用CPU时间、进程状态等等。 

2) 每个进程的状态可以是就绪 r(ready)、运行R(Running)、或完成F(Finished)三种状态之一。

3) 就绪进程获得 CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。

4) 如果运行一个时间片后,进程的已占用 CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,应把它插入就绪队列等待下一次调度。

5) 每进行一次调度,程序都打印一次运行进程、就绪队列中各个进程的 PCB,以便进行检查。   

6) 重复以上过程,直到所要进程都完成为止。

3.源代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct node
{
char name[10]; /*进程标识符*/
int prio; /*进程优先数*/
int round; /*进程时间轮转时间片*/
int cputime; /*进程占用CPU时间*/
int needtime; /*进程到完成还要的时间*/
int count; /*计数器*/
char state; /*进程的状态*/
struct node *next; /*链指针*/
}PCB;
PCB *finish,*ready,*tail,*run; /*队列指针*/
int N; /*进程数*/
/*将就绪队列中的第一个进程投入运行*/
firstin()
{
run=ready; /*就绪队列头指针赋值给运行头指针*/
run->state='R'; /*进程状态变为运行态*/
ready=ready->next; /*就绪对列头指针后移到下一进程*/
}
void prt1(char a)
{
if(toupper(a)=='P') /*优先数法*/
printf(" name cputime needtime priority state\n");
else
printf(" name cputime needtime count round state\n");
}
/*进程PCB输出*/
void prt2(char a,PCB *q)
{
if(toupper(a)=='P') /*优先数法的输出*/
printf(" %-10s%-10d%-10d%-10d %c\n",q->name,
q->cputime,q->needtime,q->prio,q->state);
else/*轮转法的输出*/
printf(" %-10s%-10d%-10d%-10d%-10d %-c\n",q->name,
q->cputime,q->needtime,q->count,q->round,q->state);
}
/*输出函数*/
void prt(char algo)
{
PCB *p;
prt1(algo); /*输出标题*/
if(run!=NULL) /*如果运行指针不空*/
prt2(algo,run); /*输出当前正在运行的PCB*/
p=ready; /*输出就绪队列PCB*/
while(p!=NULL)
{
prt2(algo,p);
p=p->next;
}
p=finish; /*输出完成队列的PCB*/
while(p!=NULL)
{
prt2(algo,p);
p=p->next;
}
getchar(); /*压任意键继续*/
}
/*优先数的插入算法*/
insert1(PCB *q)
{
PCB *p1,*s,*r;
int b;
s=q; /*待插入的PCB指针*/
p1=ready; /*就绪队列头指针*/
r=p1; /*r做p1的前驱指针*/
b=1;
while((p1!=NULL)&&b) /*根据优先数确定插入位置*/
if(p1->prio>=s->prio)
{
r=p1;
p1=p1->next;
}
else
b=0;
if(r!=p1) /*如果条件成立说明插入在r与p1之间*/
{
r->next=s;
s->next=p1;
}
else
{
s->next=p1; /*否则插入在就绪队列的头*/
ready=s;
}
}
/*轮转法插入函数*/
insert2(PCB *p2)
{
tail->next=p2; /*将新的PCB插入在当前就绪队列的尾*/
tail=p2;
p2->next=NULL;
}
/*优先数创建初始PCB信息*/
void create1(char alg)
{
PCB *p;
int i,time;
char na[10];
ready=NULL; /*就绪队列头指针*/
finish=NULL; /*完成队列头指针*/
run=NULL; /*运行队列指针*/
printf("输入进程名称和运行时间\n"); /*输入进程标识和所需时间创建PCB*/
for(i=1;i<=N;i++ )
{
p=malloc(sizeof(PCB));
scanf("%s",na);
scanf("%d",&time);
strcpy(p->name,na);
p->cputime=0;
p->needtime=time;
p->state='w';
p->prio=50-time;
if(ready!=NULL) /*就绪队列不空调用插入函数插入*/
insert1(p);
else
{
p->next=ready; /*创建就绪队列的第一个PCB*/
ready=p;
}
}
//clrscr();
printf(" 优先算法的输出:\n");
printf("************************************************\n");
prt(alg); /*输出进程PCB信息*/
run=ready; /*将就绪队列的第一个进程投入运行*/
ready=ready->next;
run->state='R';
}
/*轮转法创建进程PCB*/
void create2(char alg)
{
PCB *p;
int i,time;
char na[10];
ready=NULL;
finish=NULL;
run=NULL;
printf("输入进程的名称和运行时间:\n");
for(i=1;i<=N;i++)
{
p=malloc(sizeof(PCB));
scanf("%s",na);
scanf("%d",&time);
strcpy(p->name,na);
p->cputime=0;
p->needtime=time;
p->count=0; /*计数器*/
p->state='w';
p->round=3; /*时间片*/
if(ready!=NULL)
insert2(p);
else
{
p->next=ready;
ready=p;
tail=p;
}
}
//clrscr();
printf(" 简单时间片轮转输出 \n");
printf("************************************************\n");
prt(alg); /*输出进程PCB信息*/
run=ready; /*将就绪队列的第一个进程投入运行*/
ready=ready->next;
run->state='R';
}
/*优先数调度算法*/
priority(char alg)
{
while(run!=NULL) /*当运行队列不空时,有进程正在运行*/
{
run->cputime=run->cputime+1;
run->needtime=run->needtime-1;
run->prio=run->prio-3; /*每运行一次优先数降低3个单位*/
if(run->needtime==0) /*如所需时间为0将其插入完成队列*/
{
run->next=finish;
finish=run;
run->state='F'; /*置状态为完成态*/
run=NULL; /*运行队列头指针为空*/
if(ready!=NULL) /*如就绪队列不空*/
firstin(); /*将就绪对列的第一个进程投入运行*/
}
else /*没有运行完同时优先数不是最大,则将其变为就绪态插入到就绪队列*/
if((ready!=NULL)&&(run->prio<ready->prio))
{
run->state='W';
insert1(run);
firstin(); /*将就绪队列的第一个进程投入运行*/
}
prt(alg); /*输出进程PCB信息*/
}
}
/*时间片轮转法*/
roundrun(char alg)
{
while(run!=NULL)
{
run->cputime=run->cputime+1;
run->needtime=run->needtime-1;
run->count=run->count+1;
if(run->needtime==0)/*运行完将其变为完成态,插入完成队列*/
{
run->next=finish;
finish=run;
run->state='F';
run=NULL;
if(ready!=NULL)
firstin(); /*就绪对列不空,将第一个进程投入运行*/
}
else
if(run->count==run->round) /*如果时间片到*/
{
run->count=0; /*计数器置0*/
if(ready!=NULL) /*如就绪队列不空*/
{
run->state='W'; /*将进程插入到就绪队列中等待轮转*/
insert2(run);
firstin(); /*将就绪对列的第一个进程投入运行*/
}
}
prt(alg); /*输出进程信息*/
}
}
/*主函数*/
main()
{
char flag; /*算法标记*/
//clrscr();
printf("选择算法类型:P/R(优先算法/轮转法)\n");
scanf("%c",&flag); /*输入字符确定算法*/
printf("输入进程个数:\n");
scanf("%d",&N); /*输入进程数*/
if(flag=='P'||flag=='p')
{
create1(flag); /*优先数法*/
priority(flag);
}
else
if(flag=='R'||flag=='r')
{
create2(flag); /*轮转法*/
roundrun(flag);
}
}

4.实验结果:

 

5.总结

   用户可以选择哪种方式进行调度,有优先算法和轮转法两种,但在开始调度前要创建好进程,在创建的过程中,如选择的是优先算法,则按优先级插到队列后面,若是一般的轮转法则直接插到就绪队列后面即可;完成对进程的创建后就调用相应的调度算法进行调度。

posted @ 2015-12-03 18:51  44吴容芝  阅读(417)  评论(0编辑  收藏  举报