20210809 noip34
做过,但当时咕了 T3
Merchant
先特判 \(t=0\),之后斜率一定会起作用。
考虑最终选择的物品集合,它们的斜率和一定大于 \(0\),因此答案具有单调性,可以二分。
实现的时候注意细节
const int N = 1e6+5;
int n,m;
LL s,k[N],b[N];
LL y[N];
bool check(int x) {
For(i,1,n) y[i] = k[i] * x + b[i];
nth_element(y+1,y+m,y+n+1,greater<LL>()); // O(n)找前m大
LL sum = 0;
For(i,1,m) {
if( y[i] >= 0 ) sum += y[i]; // 可能选不满m个
if( sum >= s ) return 1; // 如果不在这里判会爆LL
}
return 0;
}
signed main() {
freopen("merchant.in","r",stdin);
freopen("merchant.out","w",stdout);
read(n,m,s);
For(i,1,n) read(k[i],b[i]);
if( check(0) ) { puts("0"); return 0; }
int l = 1, r = 1e9;
while( l < r ) {
int mid = l+r>>1;
if( check(mid) ) r = mid;
else l = mid+1;
}
write(l);
return iocl();
}
Equation
乍一看不好做,但题目只求 \(x_1\) 的值,可以把每个方程改写成 \(x_i=k_ix_1+b_i\) 的形式,修改时用 BIT 维护 \(b\) 即可。注意分深度的奇偶来判断正负。
const int N = 1e6+5;
int n,q,fa[N],val[N];
int ind,dfn[N],siz[N],k[N];
vector<int> to[N];
struct BIT {
LL t[N];
void add(int i,LL x) { for(;i<=n;i+=i&-i)t[i]+=x; }
void add(int l,int r,LL x) { add(l,x), add(r+1,-x); }
LL operator [] (int i) { LL res=0; for(;i;i-=i&-i)res+=t[i]; return res; }
} b;
void none() { putchar('n'),putchar('o'),putchar('n'),putchar('e'),putchar(10); }
void inf() { putchar('i'),putchar('n'),putchar('f'),putchar(10); }
void dfs(int u) {
dfn[u] = ++ind, siz[u] = 1;
for(int v : to[u]) k[v] = -k[u], dfs(v), siz[u] += siz[v];
b.add(dfn[u],dfn[u]+siz[u]-1,k[u]*val[u]);
}
signed main() {
freopen("equation.in","r",stdin);
freopen("equation.out","w",stdout);
read(n,q);
For(i,2,n) {
read(fa[i]), read(val[i]);
to[fa[i]].pb(i);
}
k[1] = 1, dfs(1);
while( q-- ) {
int op; read(op);
if( op == 1 ) {
int u,v,s; read(u,v,s);
int kk = k[u]+k[v]; LL bb = s-k[u]*b[dfn[u]]-k[v]*b[dfn[v]];
if( !kk ) !bb ? inf() : none();
else if( bb % kk ) none();
else !bb ? none() : write(bb/kk);
} else {
int u,w; read(u,w);
b.add(dfn[u],dfn[u]+siz[u]-1,k[u]*(w-val[u])), val[u] = w;
}
}
return iocl();
}
rectangle
发现 \(n\) 很大而值域很小,考虑直接在值域上找矩形。
枚举列来确定矩形左右边界,根据左右边界上的点的纵坐标来确定合法的上下边界。
具体做法
认为值域和 \(n\) 同阶,时间复杂度 \(O(n^2\log n)\)
const int N = 1e4+5, X = 2500, mod = 1e9+7;
int n,cnt[N],mp[X+5][X+5];
bool vis[X+5][X+5];
int ans;
struct BIT {
int t[X+5];
void add(int i,int x) { for(;i<=X;i+=i&-i)t[i]+=x; }
int query(int l,int r) {
int res=0; for(--l;r>l;r-=r&-r)res+=t[r];
for(;l>r;l-=l&-l)res-=t[l]; return res; }
} siz[X+5],sum[X+5];
signed main() {
freopen("rectangle.in","r",stdin);
freopen("rectangle.out","w",stdout);
read(n);
For(i,1,n) {
int x; read(x);
read(mp[x][++cnt[x]]);
}
For(i,1,X) {
sort(mp[i]+1,mp[i]+cnt[i]+1);
mp[i][cnt[i]+1] = X+1;
}
For(r,1,X) if( cnt[r] ) {
For(i,1,cnt[r]) if( !vis[r][mp[r][i]] ) vis[r][mp[r][i]] = 1,
siz[r].add(mp[r][i],1), sum[r].add(mp[r][i],mp[r][i]);
rFor(l,r-1,1) if( cnt[l] ) {
For(i,1,cnt[l]) if( !vis[r][mp[l][i]] ) vis[r][mp[l][i]] = 1,
siz[r].add(mp[l][i],1), sum[r].add(mp[l][i],mp[l][i]);
int i = 1, j = 1, now = max(mp[l][1],mp[r][1]);
while( mp[l][i+1] <= now ) ++i;
while( mp[r][j+1] <= now ) ++j;
while( i <= cnt[l] && j <= cnt[r] ) {
int up = min(mp[l][i+1],mp[r][j+1]), down = min(mp[l][i],mp[r][j]);
ans += (r-l) *
(((LL)sum[r].query(now,up-1) * siz[r].query(1,down) -
(LL)siz[r].query(now,up-1) * sum[r].query(1,down)) %mod) %mod;
if( ans >= mod ) ans -= mod;
now = up;
if( mp[l][i+1] <= now ) ++i;
if( mp[r][j+1] <= now ) ++j;
}
}
}
write(ans);
return iocl();
}