摘要: 概述 鉴于决策树容易过拟合的缺点,随机森林采用多个决策树的投票机制来改善决策树,我们假设随机森林使用了m棵决策树,那么就需要产生m个一定数量的样本集来训练每一棵树,如果用全样本去训练m棵决策树显然是不可取的,全样本训练忽视了局部样本的规律,对于模型的泛化能力是有害的 产生n个样本的方法采用Boots 阅读全文
posted @ 2018-05-10 10:28 喵喵帕斯 阅读(3050) 评论(0) 推荐(0) 编辑