Codeforces-542div2
https://www.cnblogs.com/31415926535x/p/10468017.html
codeforces-1130A~G
和队友做了一套题,,
A. Be Positive
题意
题意是给你一串整数,,要找到一个除数使得每一个数被除后正数的个数大于等于 \(\lceil \frac{n}{2} \rceil\),,,
分析
统计出所有正数,负数的个数,,正数多那个除数就是1,负数多就是-1
代码
//cf
#include <bits/stdc++.h>
//#include <iostream>
//#include <cstdio>
//#include <cstdlib>
//#include <string.h>
//#include <algorithm>
#define aaa cout<<233<<endl;
#define endl '\n'
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
const int inf = 0x3f3f3f3f;//1061109567
const ll linf = 0x3f3f3f3f3f3f3f;
const double eps = 1e-6;
const double pi = 3.14159265358979;
const int maxn = 1e6 + 5;
const int maxm = 2e5 + 5;
const ll mod = 1e9 + 7;
int a[maxn];
int main()
{
// freopen("233.in" , "r" , stdin);
// freopen("233.out" , "w" , stdout);
ios_base::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int n; cin >> n;
for(int i = 1; i <= n; ++i)cin >> a[i];
sort(a + 1, a + 1 + n);
int nump = 0;
int numn = 0;
for(int i = 1; i <= n; ++i)
if(a[i] > 0)
++nump;
else if(a[i] < 0)
++numn;
if(nump >= (n + 1) / 2)
cout << 1 << endl;
else if(numn >= (n + 1) / 2)
cout << -1 << endl;
else
cout << 0 << endl;
return 0;
}
B. Two Cakes
题意
题意是由两组1~n的数组成的序列,,每一个人选择一组,,费用是两个树之间的距离,,然后问你总距离最小是多少,,
分析
我一开始想着先贪心处理一个人的选择出最少的,,再加上剩下的那个人的,,然后就wa了,,因为这样并不保证这一次选的和下一次选的距离和是最小的,,解决方法是两个一起处理,,考虑每一种选择的情况,,这样取最小的就行了,,,
代码
//cf
#include <bits/stdc++.h>
//#include <iostream>
//#include <cstdio>
//#include <cstdlib>
//#include <string.h>
//#include <algorithm>
#define aaa cout<<233<<endl;
#define endl '\n'
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
const int inf = 0x3f3f3f3f;//1061109567
const ll linf = 0x3f3f3f3f3f3f3f;
const double eps = 1e-6;
const double pi = 3.14159265358979;
const int maxn = 1e6 + 5;
const int maxm = 1e4 + 5;
const ll mod = 1e9 + 7;
int a[maxn][2];
bool flag[maxn];
int main()
{
// freopen("233.in" , "r" , stdin);
// freopen("233.out" , "w" , stdout);
ios_base::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int n;cin >> n;
int t;
memset(flag, false, sizeof flag);
for(int i = 1; i <= 2 * n; ++i)
{
cin >> t;
if(!flag[t])
{
a[t][0] = i;
flag[t] = true;
}
else
a[t][1] = i;
}
ll ans = a[1][0] + a[1][1] - 2;
for(int i = 1; i <= n - 1; ++i)
{
int p = abs(a[i + 1][0] - a[i][0]) + abs(a[i + 1][1] - a[i][1]);
int q = abs(a[i + 1][0] - a[i][1]) + abs(a[i + 1][1] - a[i][0]);
ans += min(p, q);
}
cout << ans << endl;
return 0;
}
C. Connect
题意
给你一个地图,,其中陆地是0,水则是1,,然后给你一个起点一个终点,,你可以在任意两块陆地上建 一条 隧道使这两片陆地相通,,然后问你起点到终点需要的隧道的最小长度,,,
分析
因为只能建一条隧道,,所以如果起点所在的陆地与终点所在的陆地不相通的话,,那么这条隧道一定在这两片陆地之间,,数据量不大,,直接枚举这两片陆地上的点,,取最小的距离就行了,,,
判断一个点是否在起点或终点所在的陆地可以现用并查集把地图 “染色”,,,这样就可以枚举了,,,
代码
//cf
#include <bits/stdc++.h>
//#include <iostream>
//#include <cstdio>
//#include <cstdlib>
//#include <string.h>
//#include <algorithm>
#define aaa cout<<233<<endl;
#define endl '\n'
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
const int inf = 0x3f3f3f3f;//1061109567
const ll linf = 0x3f3f3f3f3f3f3f;
const double eps = 1e-6;
const double pi = 3.14159265358979;
const int maxn = 1e6 + 5;
const int maxm = 2e5 + 5;
const ll mod = 1e9 + 7;
int fa[maxn];
int _find(int x)
{
if(fa[x] == x)return x;
return fa[x] = _find(fa[x]);
}
void _union(int x, int y)
{
int f1 = _find(x);
int f2 = _find(y);
if(f1 != f2)fa[f1] = f2;
else fa[f2] = f1;
}
int mp[60][60];
int solve(int i, int j, int n)
{
int x1 = i / n;
int y1 = i - x1 * n;
int x2 = j / n;
int y2 = j - x2 * n;
if(y1 == 0)
{
y1 = n;
--x1;
}
if(y2 == 0)
{
y2 = n;
--x2;
}
// cout << x1 << y1 << x2 << y2 << endl;
return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
}
int main()
{
// freopen("233.in" , "r" , stdin);
// freopen("233.out" , "w" , stdout);
// ios_base::sync_with_stdio(0);
// cin.tie(0);cout.tie(0);
int n;scanf("%d", &n);
int x1, x2, y1, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
for(int i = 1; i <= n; ++i)
{
getchar();
for(int j = 1; j <= n; ++j)
mp[i][j] = (int)(getchar() - '0');
}
for(int i = n + 1; i <= n + 1 + n * n; ++i)fa[i] = i;
for(int i = 1; i <= n; ++i)
{
for(int j = 1; j <= n; ++j)
{
if(mp[i - 1][j] == mp[i][j] && i - 1 >= 1)
_union(i * n + j, (i - 1) * n + j);
if(mp[i + 1][j] == mp[i][j] && i + 1 <= n)
_union(i * n + j, (i + 1) * n + j);
if(mp[i][j + 1] == mp[i][j] && j + 1 <= n)
_union(i * n + j, i * n + j + 1);
if(mp[i][j - 1] == mp[i][j] && j - 1 >= 1)
_union(i * n + j, i * n + j - 1);
}
}
// for(int i = 1; i <=n; ++i)
// {
// for(int j = 1; j <= n; ++j)
// cout << _find(i * n + j) << " ";
// cout << endl;
// }
int s = _find(x1 * n + y1);
int t = _find(x2 * n + y2);
// cout << s << t << endl;
int ans = inf;
for(int i = n + 1; i <= n + 1 + n * n; ++i)
{
for(int j = 1 + n; j <= n + 1 + n * n; ++j)
{
if(_find(i) == s && _find(j) == t)
{
ans = min(ans, solve(i, j, n));
}
}
}
cout << ans << endl;
return 0;
}
D1. Toy Train
题意
由一个环形的铁路,,上面有n个车站,,每个车站有一些糖果,,这些糖果要运到 \(b_i\) 那个车站,,,火车只能在一个车站拉上一个糖果,,但是可以放下任意块糖果,,,问你从这n个车站出发送完所有的糖果所需的最少的时间,,
分析
每次只能上一个糖果,,最后下的糖果就是糖果数量最多的车站的,,找一个从这个车站出发花费最多的另一个车站,,这样把那个车站所有的糖果送完时其他车站的糖果顺带也就送完了,,,
枚举每一个车站i,,对于车站i枚举所有的其他的车站,,求出所有的时间里的最大值就是这个车站所用的时间了,,,
代码
//cf
#include <bits/stdc++.h>
//#include <iostream>
//#include <cstdio>
//#include <cstdlib>
//#include <string.h>
//#include <algorithm>
#define aaa cout<<233<<endl;
#define endl '\n'
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
const int inf = 0x3f3f3f3f;//1061109567
const ll linf = 0x3f3f3f3f3f3f3f;
const double eps = 1e-6;
const double pi = 3.14159265358979;
const int maxn = 1e6 + 5;
const int maxm = 1e4 + 5;
const ll mod = 1e9 + 7;
struct node
{
int num;
int mi;
}node[maxm];
int n, m;
int getdis(int i, int j)
{
//get the dis of i -> j
if(i <= j)return j - i;
else return n - i + j;
}
int solve(int loc)
{
//find the furthest and the most candies node
int fur = loc;
int num = node[loc].num;
int ans = 0;
int dis;
for(int i = loc; i <= n; ++i)
{
if(node[i].mi == inf)continue;
dis = getdis(loc, i) + (node[i].num - 1) * n + node[i].mi;
ans = max(ans, dis);
}
for(int i = 1; i <= loc - 1; ++i)
{
if(node[i].mi == inf)continue;
dis = getdis(loc, i) + (node[i].num - 1) * n + node[i].mi;
ans = max(ans, dis);
}
// for(int i = loc; i <= n; ++i)
// {
// if(node[i].num >= num)
// {
// fur = i;
// num = node[i].num;
// }
// }
// for(int i = 1; i <= loc - 1; ++i)
// {
// if(node[i].num >= num)
// {
// fur = i;
// num = node[i].num;
// }
// }
// cout << fur << " ";
// int ans = n * (node[fur].num - 1);
// ans += getdis(loc, fur);
// ans += getdis(fur, node[fur].mi);
return ans;
}
int main()
{
// freopen("233.in" , "r" , stdin);
// freopen("233.out" , "w" , stdout);
// ios_base::sync_with_stdio(0);
// cin.tie(0);cout.tie(0);
cin >> n >> m;
int a, b;
for(int i = 1; i <= n; ++i)node[i].mi = inf;
for(int i = 1; i <= n; ++i)node[i].num = 0;
for(int i = 1; i <= m; ++i)
{
cin >> a >> b;
++node[a].num;
if(getdis(a, b) <= node[a].mi)
node[a].mi = getdis(a, b);
}
for(int i = 1; i <= n; ++i)
cout << solve(i) << " ";
cout << endl;
// for(int i = 1; i <= n; ++i)
// {
// cout << i << " ";
// cout << solve(i) << endl;
// }
return 0;
}
E. Wrong Answer
题意
一个数列求出最大的 区间和乘以区间长度,,
他给的算法当前面一段区间和出现负数就舍弃了,,没有考虑长度对最后答案的影响,,,
题目要我们构造一个数列,,使得这个数列的正确答案比它的做法算出的结果大k
分析
可以构造一个前面1998个都是0,,后面一个数是-p,一个时p + q,,,
这样正确的答案就是 \(2000q\),,,他算出的答案就是 \(p + q\),,,
要大k,,就是 \(2000q - (p+q)=k\),,也就是 \(q= \frac{p+k}{1999}\) ,,,为了保证p,q都是整数,,,那么就设 \(p=1999-k\%1999\),,这样算出的q就是整数,,,
//cf
#include <bits/stdc++.h>
//#include <iostream>
//#include <cstdio>
//#include <cstdlib>
//#include <string.h>
//#include <algorithm>
#define aaa cout<<233<<endl;
#define endl '\n'
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
const int inf = 0x3f3f3f3f;//1061109567
const ll linf = 0x3f3f3f3f3f3f3f;
const double eps = 1e-6;
const double pi = 3.14159265358979;
const int maxn = 1e6 + 5;
const int maxm = 1e4 + 5;
const ll mod = 1e9 + 7;
int main()
{
// freopen("233.in" , "r" , stdin);
// freopen("233.out" , "w" , stdout);
ios_base::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int k; cin >> k;
cout << 2000 << endl;
for(int i = 1; i <= 2000 - 2; ++i)cout << 0 << " ";
int p = 1999 - k % 1999;
cout << -p << " " << ((k + p) / 1999 + p) << endl;
return 0;
}
(end)