Codeforces Round #713 (Div. 3)
Codeforces Round #713 (Div. 3)
A - Spy Detected!
int main() {
IOS;
for (cin >> _; _; --_) {
int a, b, c; cin >> n >> a >> b >> c;
if (a == b && a != c) k = 3;
else if (a == c && a != b) k = 2;
else if (b == c) k = 1, a = b;
rep (i, 4, n) {
cin >> b;
if (b != a) k = i;
}
cout << k << '\n';
}
return 0;
}
B - Almost Rectangle
int main() {
IOS;
for (cin >> _; _; --_) {
cin >> n; PII a(0, 0), b(0, 0);
rep (i, 1, n) rep (j, 1, n) {
cin >> s[i][j];
if (s[i][j] == '*') {
if (a == PII{0, 0}) a = { i, j };
else b = { i, j };
}
}
if (a.fi == b.fi && a.fi + 1 <= n) s[a.fi + 1][a.se] = s[b.fi + 1][b.se] = '*';
else if (a.fi == b.fi) s[a.fi - 1][a.se] = s[b.fi - 1][b.se] = '*';
else if (a.se == b.se && a.se + 1 <= n) s[a.fi][a.se + 1] = s[b.fi][b.se + 1] = '*';
else if (a.se == b.se) s[a.fi][a.se - 1] = s[b.fi][b.se - 1] = '*';
else s[a.fi][b.se] = s[b.fi][a.se] = '*';
rep (i, 1, n) { rep (j, 1, n) cout << s[i][j]; cout << '\n'; }
}
return 0;
}
C - A-B Palindrome
int main() {
IOS;
for (cin >> _; _; --_) {
cin >> m >> n >> s; bool f = n + m == s.size();
rep (i, 0, s.size() - 1 >> 1) {
if (s[i] == '1' && s[s.size() - i - 1] == '1') n -= 2;
else if (s[i] == '1' && s[s.size() - i - 1] == '?') n -= 2, s[s.size() - i - 1] = '1';
else if (s[i] == '?' && s[s.size() - i - 1] == '1') n -= 2, s[i] = '1';
else if (s[i] == '0' && s[s.size() - i - 1] == '0') m -= 2;
else if (s[i] == '0' && s[s.size() - i - 1] == '?') m -= 2, s[s.size() - i - 1] = '0';
else if (s[i] == '?' && s[s.size() - i - 1] == '0') m -= 2, s[i] = '0';
else if (s[i] != s[s.size() - i - 1]) f = 0;
if (i == s.size() - i - 1 && s[i] == '1') ++n;
else if (i == s.size() - i - 1 && s[i] == '0') ++m;
}
if (!f || (n & m & 1) || min(n, m) < 0) { cout << "-1\n"; continue; }
rep (i, 0, s.size() - 1 >> 1) if (s[i] == '?') {
if (n >= 2) s[i] = s[s.size() - i - 1] = '1', n -= 2;
else if (m >= 2) s[i] = s[s.size() - i - 1] = '0', m -= 2;
else if (n == 1) s[i] = '1';
else s[i] = '0';
}
cout << s << '\n';
}
return 0;
}
D - Corrupted Array
排序, 判断是否存在就行
注意会爆 int
int main() {
IOS;
for (cin >> _; _; --_) {
cin >> n; set<ll> st; ll s = 0;
rep (i, 1, n + 2) cin >> b[i]; sort(b + 1, b + 3 + n);
rep (i, 1, n) s += b[i], st.insert(b[i]);
if (s == b[n + 1] || s == b[n + 2]) rep (i, 1, n) cout << b[i] << char(" \n"[i == n]);
else if (st.count(s + b[n + 1] - b[n + 2])) {
rep (i, 1, n + 1) if (b[i] == s + b[n + 1] - b[n + 2]) { b[i] = b[n + 1]; break; }
rep (i, 1, n) cout << b[i] << char(" \n"[i == n]);
}
else cout << "-1\n";
}
return 0;
}
E - Permutation by Sum
贪心即可, 先判断存不存在
再把\([l, r]\)区间设为\([n - r + l - 1, n]\)
贪心从高到底减小数字即可, 用set维护
int main() {
IOS;
for (cin >> _; _; --_) {
cin >> k >> n >> m >> t; set<int> st; int s = (k * 2 - m + n) * (m - n + 1) >> 1;
if (t > s || t < (m - n + 2) * (m - n + 1) >> 1) { cout << "-1\n"; continue; }
rep(i, 1, k - m + n - 1) st.insert(i);
rep(i, n, m) a[i] = k - i + n;
rep(i, n, m) {
if (s == t) break;
auto it = st.lower_bound(a[i] - s + t);
if (it == st.end()) continue;
st.insert(a[i]); s -= a[i] - *it; a[i] = *it; st.erase(it);
}
rep(i, 1, n - 1) a[i] = *st.begin(), st.erase(st.begin());
rep(i, m + 1, k) a[i] = *st.begin(), st.erase(st.begin());
rep(i, 1, k) cout << a[i] << char(" \n"[i == k]);
}
return 0;
}
F - Education
每升一级, 去一次最小值
int main() {
IOS;
for (cin >> _; _; --_) {
cin >> n >> m; k = 0; ll ans = 1e9, d = 0;
rep (i, 1, n) cin >> a[i];
rep (i, 1, n - 1) cin >> b[i];
rep (i, 1, n) {
umin(ans, (m <= k ? 0 : (m - k - 1) / a[i] + 1) + d);
int need = b[i] <= k ? 0 : (b[i] - k - 1) / a[i] + 1;
k += a[i] * need - b[i]; d += need + 1;
}
cout << ans << '\n';
}
return 0;
}
G - Short Task
设\(f(i)\)表示\(i\)的因子和,
发现\(f(i \times j) = f(i) \times f(j), gcd(i, j) = 1\) 故, \(f(i)\)为积性函数
那么显然能用线性筛来筛
当\(gcd(i, j) != 1\)时, 先把\(gcd\)抽出来就好了
即设\(g(i)\)表示\(i\)的最小因子的次方前缀和\(g(i) = p^0 + p^1 + p^2 + ... + p^k, p^k \leqslant i\)
int pri[N], tot, st[N];
ll f[N], g[N];
void init(int n) {
f[1] = g[1] = 1; st[1] = 1;
rep(i, 2, n) {
if (!f[i]) {
pri[++tot] = i, f[i] = g[i] = 1 + i;
umin(st[f[i]], i);
}
for (int j = 1; j <= tot && pri[j] <= n / i; ++j) {
g[i * pri[j]] = i % pri[j] ? 1 + pri[j] : g[i] * pri[j] + 1;
f[i * pri[j]] = i % pri[j] ? f[i] * f[pri[j]] : f[i] / g[i] * g[i * pri[j]];
if (f[i * pri[j]] <= 1e7) umin(st[f[i * pri[j]]], i * pri[j]);
if (i % pri[j] == 0) break;
}
}
}
int main() {
IOS; memset(st, 0x3f, sizeof st); init(1e7);
for (cin >> _; _; --_) {
cin >> n;
cout << (st[0] == st[n] ? -1 : st[n]) << '\n';
}
return 0;
}