手写一个RPC框架
一、前言
前段时间看到一篇不错的文章《看了这篇你就会手写RPC框架了》,于是便来了兴趣对着实现了一遍,后面觉得还有很多优化的地方便对其进行了改进。
主要改动点如下:
- 除了Java序列化协议,增加了protobuf和kryo序列化协议,配置即用。
- 增加多种负载均衡算法(随机、轮询、加权轮询、平滑加权轮询),配置即用。
- 客户端增加本地服务列表缓存,提高性能。
- 修复高并发情况下,netty导致的内存泄漏问题
- 由原来的每个请求建立一次连接,改为建立TCP长连接,并多次复用。
- 服务端增加线程池提高消息处理能力
二、介绍
RPC,即 Remote Procedure Call(远程过程调用),调用远程计算机上的服务,就像调用本地服务一样。RPC可以很好的解耦系统,如WebService就是一种基于Http协议的RPC。
总的来说,就如下几个步骤:
- 客户端(ServerA)执行远程方法时就调用client stub传递类名、方法名和参数等信息。
- client stub会将参数等信息序列化为二进制流的形式,然后通过Sockect发送给服务端(ServerB)
- 服务端收到数据包后,server stub 需要进行解析反序列化为类名、方法名和参数等信息。
- server stub调用对应的本地方法,并把执行结果返回给客户端
所以一个RPC框架有如下角色:
服务消费者
远程方法的调用方,即客户端。一个服务既可以是消费者也可以是提供者。
服务提供者
远程服务的提供方,即服务端。一个服务既可以是消费者也可以是提供者。
注册中心
保存服务提供者的服务地址等信息,一般由zookeeper、redis等实现。
监控运维(可选)
监控接口的响应时间、统计请求数量等,及时发现系统问题并发出告警通知。
三、实现
本RPC框架rpc-spring-boot-starter涉及技术栈如下:
- 使用zookeeper作为注册中心
- 使用netty作为通信框架
- 消息编解码:protostuff、kryo、java
- spring
- 使用SPI来根据配置动态选择负载均衡算法等
由于代码过多,这里只讲几处改动点。
3.1动态负载均衡算法
1.编写LoadBalance的实现类
2.自定义注解 @LoadBalanceAno
- /**
- * 负载均衡注解
- */
- public LoadBalanceAno {
- String value() default "";
- }
- /**
- * 轮询算法
- */
- public class FullRoundBalance implements LoadBalance {
- private static Logger logger = LoggerFactory.getLogger(FullRoundBalance.class);
- private volatile int index;
-
- public synchronized Service chooseOne(List<Service> services) {
- // 加锁防止多线程情况下,index超出services.size()
- if (index == services.size()) {
- index = 0;
- }
- return services.get(index++);
- }
- }
3.新建在resource目录下META-INF/servers文件夹并创建文件
4.RpcConfig增加配置项loadBalance
- /**
- * @author 2YSP
- * @date 2020/7/26 15:13
- */
- "sp.rpc")
- public class RpcConfig {
- /**
- * 服务注册中心地址
- */
- private String registerAddress = "127.0.0.1:2181";
- /**
- * 服务暴露端口
- */
- private Integer serverPort = 9999;
- /**
- * 服务协议
- */
- private String protocol = "java";
- /**
- * 负载均衡算法
- */
- private String loadBalance = "random";
- /**
- * 权重,默认为1
- */
- private Integer weight = 1;
- // 省略getter setter
- }
5.在自动配置类RpcAutoConfiguration根据配置选择对应的算法实现类
- /**
- * 使用spi匹配符合配置的负载均衡算法
- *
- * @param name
- * @return
- */
- private LoadBalance getLoadBalance(String name) {
- ServiceLoader<LoadBalance> loader = ServiceLoader.load(LoadBalance.class);
- Iterator<LoadBalance> iterator = loader.iterator();
- while (iterator.hasNext()) {
- LoadBalance loadBalance = iterator.next();
- LoadBalanceAno ano = loadBalance.getClass().getAnnotation(LoadBalanceAno.class);
- Assert.notNull(ano, "load balance name can not be empty!");
- if (name.equals(ano.value())) {
- return loadBalance;
- }
- }
- throw new RpcException("invalid load balance config");
- }
-
- public ClientProxyFactory proxyFactory(@Autowired RpcConfig rpcConfig) {
- ClientProxyFactory clientProxyFactory = new ClientProxyFactory();
- // 设置服务发现着
- clientProxyFactory.setServerDiscovery(new ZookeeperServerDiscovery(rpcConfig.getRegisterAddress()));
- // 设置支持的协议
- Map<String, MessageProtocol> supportMessageProtocols = buildSupportMessageProtocols();
- clientProxyFactory.setSupportMessageProtocols(supportMessageProtocols);
- // 设置负载均衡算法
- LoadBalance loadBalance = getLoadBalance(rpcConfig.getLoadBalance());
- clientProxyFactory.setLoadBalance(loadBalance);
- // 设置网络层实现
- clientProxyFactory.setNetClient(new NettyNetClient());
- return clientProxyFactory;
- }
3.2本地服务列表缓存
使用Map来缓存数据
- /**
- * 服务发现本地缓存
- */
- public class ServerDiscoveryCache {
- /**
- * key: serviceName
- */
- private static final Map<String, List<Service>> SERVER_MAP = new ConcurrentHashMap<>();
- /**
- * 客户端注入的远程服务service class
- */
- public static final List<String> SERVICE_CLASS_NAMES = new ArrayList<>();
- public static void put(String serviceName, List<Service> serviceList) {
- SERVER_MAP.put(serviceName, serviceList);
- }
- /**
- * 去除指定的值
- * @param serviceName
- * @param service
- */
- public static void remove(String serviceName, Service service) {
- SERVER_MAP.computeIfPresent(serviceName, (key, value) ->
- value.stream().filter(o -> !o.toString().equals(service.toString())).collect(Collectors.toList())
- );
- }
- public static void removeAll(String serviceName) {
- SERVER_MAP.remove(serviceName);
- }
- public static boolean isEmpty(String serviceName) {
- return SERVER_MAP.get(serviceName) == null || SERVER_MAP.get(serviceName).size() == 0;
- }
- public static List<Service> get(String serviceName) {
- return SERVER_MAP.get(serviceName);
- }
- }
ClientProxyFactory,先查本地缓存,缓存没有再查询zookeeper。
- /**
- * 根据服务名获取可用的服务地址列表
- * @param serviceName
- * @return
- */
- private List<Service> getServiceList(String serviceName) {
- List<Service> services;
- synchronized (serviceName){
- if (ServerDiscoveryCache.isEmpty(serviceName)) {
- services = serverDiscovery.findServiceList(serviceName);
- if (services == null || services.size() == 0) {
- throw new RpcException("No provider available!");
- }
- ServerDiscoveryCache.put(serviceName, services);
- } else {
- services = ServerDiscoveryCache.get(serviceName);
- }
- }
- return services;
- }
问题: 如果服务端因为宕机或网络问题下线了,缓存却还在就会导致客户端请求已经不可用的服务端,增加请求失败率。
解决方案:由于服务端注册的是临时节点,所以如果服务端下线节点会被移除。只要监听zookeeper的子节点,如果新增或删除子节点就直接清空本地缓存即可。
DefaultRpcProcessor
- /**
- * Rpc处理者,支持服务启动暴露,自动注入Service
- * @author 2YSP
- * @date 2020/7/26 14:46
- */
- public class DefaultRpcProcessor implements ApplicationListener<ContextRefreshedEvent> {
-
-
- public void onApplicationEvent(ContextRefreshedEvent event) {
- // Spring启动完毕过后会收到一个事件通知
- if (Objects.isNull(event.getApplicationContext().getParent())){
- ApplicationContext context = event.getApplicationContext();
- // 开启服务
- startServer(context);
- // 注入Service
- injectService(context);
- }
- }
- private void injectService(ApplicationContext context) {
- String[] names = context.getBeanDefinitionNames();
- for(String name : names){
- Class<?> clazz = context.getType(name);
- if (Objects.isNull(clazz)){
- continue;
- }
- Field[] declaredFields = clazz.getDeclaredFields();
- for(Field field : declaredFields){
- // 找出标记了InjectService注解的属性
- InjectService injectService = field.getAnnotation(InjectService.class);
- if (injectService == null){
- continue;
- }
- Class<?> fieldClass = field.getType();
- Object object = context.getBean(name);
- field.setAccessible(true);
- try {
- field.set(object,clientProxyFactory.getProxy(fieldClass));
- } catch (IllegalAccessException e) {
- e.printStackTrace();
- }
- // 添加本地服务缓存
- ServerDiscoveryCache.SERVICE_CLASS_NAMES.add(fieldClass.getName());
- }
- }
- // 注册子节点监听
- if (clientProxyFactory.getServerDiscovery() instanceof ZookeeperServerDiscovery){
- ZookeeperServerDiscovery serverDiscovery = (ZookeeperServerDiscovery) clientProxyFactory.getServerDiscovery();
- ZkClient zkClient = serverDiscovery.getZkClient();
- ServerDiscoveryCache.SERVICE_CLASS_NAMES.forEach(name ->{
- String servicePath = RpcConstant.ZK_SERVICE_PATH + RpcConstant.PATH_DELIMITER + name + "/service";
- zkClient.subscribeChildChanges(servicePath, new ZkChildListenerImpl());
- });
- logger.info("subscribe service zk node successfully");
- }
- }
- private void startServer(ApplicationContext context) {
- ...
- }
- }
ZkChildListenerImpl
- /**
- * 子节点事件监听处理类
- */
- public class ZkChildListenerImpl implements IZkChildListener {
- private static Logger logger = LoggerFactory.getLogger(ZkChildListenerImpl.class);
- /**
- * 监听子节点的删除和新增事件
- * @param parentPath /rpc/serviceName/service
- * @param childList
- * @throws Exception
- */
-
- public void handleChildChange(String parentPath, List<String> childList) throws Exception {
- logger.debug("Child change parentPath:[{}] -- childList:[{}]", parentPath, childList);
- // 只要子节点有改动就清空缓存
- String[] arr = parentPath.split("/");
- ServerDiscoveryCache.removeAll(arr[2]);
- }
- }
3.3nettyClient支持TCP长连接
这部分的改动最多,先增加新的sendRequest接口。
实现类NettyNetClient
- /**
- * @author 2YSP
- * @date 2020/7/25 20:12
- */
- public class NettyNetClient implements NetClient {
- private static Logger logger = LoggerFactory.getLogger(NettyNetClient.class);
- private static ExecutorService threadPool = new ThreadPoolExecutor(4, 10, 200,
- TimeUnit.SECONDS, new LinkedBlockingQueue<>(1000), new ThreadFactoryBuilder()
- .setNameFormat("rpcClient-%d")
- .build());
- private EventLoopGroup loopGroup = new NioEventLoopGroup(4);
- /**
- * 已连接的服务缓存
- * key: 服务地址,格式:ip:port
- */
- public static Map<String, SendHandlerV2> connectedServerNodes = new ConcurrentHashMap<>();
-
- public byte[] sendRequest(byte[] data, Service service) throws InterruptedException {
- ....
- return respData;
- }
-
- public RpcResponse sendRequest(RpcRequest rpcRequest, Service service, MessageProtocol messageProtocol) {
- String address = service.getAddress();
- synchronized (address) {
- if (connectedServerNodes.containsKey(address)) {
- SendHandlerV2 handler = connectedServerNodes.get(address);
- logger.info("使用现有的连接");
- return handler.sendRequest(rpcRequest);
- }
- String[] addrInfo = address.split(":");
- final String serverAddress = addrInfo[0];
- final String serverPort = addrInfo[1];
- final SendHandlerV2 handler = new SendHandlerV2(messageProtocol, address);
- threadPool.submit(() -> {
- // 配置客户端
- Bootstrap b = new Bootstrap();
- b.group(loopGroup).channel(NioSocketChannel.class)
- .option(ChannelOption.TCP_NODELAY, true)
- .handler(new ChannelInitializer<SocketChannel>() {
-
- protected void initChannel(SocketChannel socketChannel) throws Exception {
- ChannelPipeline pipeline = socketChannel.pipeline();
- pipeline
- .addLast(handler);
- }
- });
- // 启用客户端连接
- ChannelFuture channelFuture = b.connect(serverAddress, Integer.parseInt(serverPort));
- channelFuture.addListener(new ChannelFutureListener() {
-
- public void operationComplete(ChannelFuture channelFuture) throws Exception {
- connectedServerNodes.put(address, handler);
- }
- });
- }
- );
- logger.info("使用新的连接。。。");
- return handler.sendRequest(rpcRequest);
- }
- }
- }
每次请求都会调用sendRequest()方法,用线程池异步和服务端创建TCP长连接,连接成功后将SendHandlerV2缓存到ConcurrentHashMap中方便复用,后续请求的请求地址(ip+port)如果在connectedServerNodes中存在则使用connectedServerNodes中的handler处理不再重新建立连接。
SendHandlerV2
- /**
- * @author 2YSP
- * @date 2020/8/19 20:06
- */
- public class SendHandlerV2 extends ChannelInboundHandlerAdapter {
- private static Logger logger = LoggerFactory.getLogger(SendHandlerV2.class);
- /**
- * 等待通道建立最大时间
- */
- static final int CHANNEL_WAIT_TIME = 4;
- /**
- * 等待响应最大时间
- */
- static final int RESPONSE_WAIT_TIME = 8;
- private volatile Channel channel;
- private String remoteAddress;
- private static Map<String, RpcFuture<RpcResponse>> requestMap = new ConcurrentHashMap<>();
- private MessageProtocol messageProtocol;
- private CountDownLatch latch = new CountDownLatch(1);
- public SendHandlerV2(MessageProtocol messageProtocol,String remoteAddress) {
- this.messageProtocol = messageProtocol;
- this.remoteAddress = remoteAddress;
- }
-
- public void channelRegistered(ChannelHandlerContext ctx) throws Exception {
- this.channel = ctx.channel();
- latch.countDown();
- }
-
- public void channelActive(ChannelHandlerContext ctx) throws Exception {
- logger.debug("Connect to server successfully:{}", ctx);
- }
-
- public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
- logger.debug("Client reads message:{}", msg);
- ByteBuf byteBuf = (ByteBuf) msg;
- byte[] resp = new byte[byteBuf.readableBytes()];
- byteBuf.readBytes(resp);
- // 手动回收
- ReferenceCountUtil.release(byteBuf);
- RpcResponse response = messageProtocol.unmarshallingResponse(resp);
- RpcFuture<RpcResponse> future = requestMap.get(response.getRequestId());
- future.setResponse(response);
- }
-
- public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
- cause.printStackTrace();
- logger.error("Exception occurred:{}", cause.getMessage());
- ctx.close();
- }
-
- public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
- ctx.flush();
- }
-
- public void channelInactive(ChannelHandlerContext ctx) throws Exception {
- super.channelInactive(ctx);
- logger.error("channel inactive with remoteAddress:[{}]",remoteAddress);
- NettyNetClient.connectedServerNodes.remove(remoteAddress);
- }
-
- public void userEventTriggered(ChannelHandlerContext ctx, Object evt) throws Exception {
- super.userEventTriggered(ctx, evt);
- }
- public RpcResponse sendRequest(RpcRequest request) {
- RpcResponse response;
- RpcFuture<RpcResponse> future = new RpcFuture<>();
- requestMap.put(request.getRequestId(), future);
- try {
- byte[] data = messageProtocol.marshallingRequest(request);
- ByteBuf reqBuf = Unpooled.buffer(data.length);
- reqBuf.writeBytes(data);
- if (latch.await(CHANNEL_WAIT_TIME,TimeUnit.SECONDS)){
- channel.writeAndFlush(reqBuf);
- // 等待响应
- response = future.get(RESPONSE_WAIT_TIME, TimeUnit.SECONDS);
- }else {
- throw new RpcException("establish channel time out");
- }
- } catch (Exception e) {
- throw new RpcException(e.getMessage());
- } finally {
- requestMap.remove(request.getRequestId());
- }
- return response;
- }
- }
RpcFuture
- package cn.sp.rpc.client.net;
- import java.util.concurrent.*;
- /**
- * @author 2YSP
- * @date 2020/8/19 22:31
- */
- public class RpcFuture<T> implements Future<T> {
- private T response;
- /**
- * 因为请求和响应是一一对应的,所以这里是1
- */
- private CountDownLatch countDownLatch = new CountDownLatch(1);
- /**
- * Future的请求时间,用于计算Future是否超时
- */
- private long beginTime = System.currentTimeMillis();
-
- public boolean cancel(boolean mayInterruptIfRunning) {
- return false;
- }
-
- public boolean isCancelled() {
- return false;
- }
-
- public boolean isDone() {
- if (response != null) {
- return true;
- }
- return false;
- }
- /**
- * 获取响应,直到有结果才返回
- * @return
- * @throws InterruptedException
- * @throws ExecutionException
- */
-
- public T get() throws InterruptedException, ExecutionException {
- countDownLatch.await();
- return response;
- }
-
- public T get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException {
- if (countDownLatch.await(timeout,unit)){
- return response;
- }
- return null;
- }
- public void setResponse(T response) {
- this.response = response;
- countDownLatch.countDown();
- }
- public long getBeginTime() {
- return beginTime;
- }
- }
此处逻辑,第一次执行 SendHandlerV2#sendRequest() 时channel需要等待通道建立好之后才能发送请求,所以用CountDownLatch来控制,等待通道建立。
自定义Future+requestMap缓存来实现netty的请求和阻塞等待响应,RpcRequest对象在创建时会生成一个请求的唯一标识requestId,发送请求前先将RpcFuture缓存到requestMap中,key为requestId,读取到服务端的响应信息后(channelRead方法),将响应结果放入对应的RpcFuture中。
SendHandlerV2#channelInactive() 方法中,如果连接的服务端异常断开连接了,则及时清理缓存中对应的serverNode。
四、压力测试
测试环境:
(英特尔)Intel(R) Core(TM) i5-6300HQ CPU @ 2.30GHz
4核
windows10家庭版(64位)
16G内存
1.本地启动zookeeper
2.本地启动一个消费者,两个服务端,轮询算法
3.使用ab进行压力测试,4个线程发送10000个请求
ab -c 4 -n 10000 http://localhost:8080/test/user?id=1
测试结果:
从图片可以看出,10000个请求只用了11s,比之前的130+秒耗时减少了10倍以上。
代码地址:
https://github.com/2YSP/rpc-spring-boot-starter
https://github.com/2YSP/rpc-example
参考:
《看了这篇你就会手写RPC框架了》