分库分表用这个就够了
一、前言
2018年写过一篇分库分表的文章《SpringBoot使用sharding-jdbc分库分表》,但是存在很多不完美的地方比如:
- sharding-jdbc的版本(1.4.2)过低,现在github上的最新版本都是5.3.2了,很多用法和API都过时了。
- 分库分表配置采用Java硬编码的方式不够灵活
- 持久层使用的是spring-boot-starter-data-jpa,而不是主流的mybatis+mybatis-plus+druid-spring-boot-stater
- 没有支持自定义主键生成策略
二、设计思路
针对上述问题,本人计划开源一个通用的分库分表starter,具备以下特性:
- 基于ShardingSphere-JDBC版本4.1.1,官方支持的特性我们都支持
- 支持yaml文件配置,无需编码开箱即用
- 支持多种数据源,整合主流的mybatis
- 支持自定义主键生成策略,并提供默认的雪花算法实现
- 支持Nacos配置中心,动态刷新配置无需重启
通过查看官方文档,可以发现starter的核心逻辑就是获取分库分表等配置,然后在自动配置类创建数据源注入Spring容器即可。
三、编码实现
3.1 starter工程搭建
首先创建一个spring-boot-starter工程ship-sharding-spring-boot-starter,不会的小伙伴可以参考以前写的教程《【SpringBoot】编写一个自己的Starter》。
创建自动配置类cn.sp.sharding.config.ShardingAutoConfig,并在resources/META-INF/spring.factories文件中配置自动配置类的全路径。
org.springframework.boot.autoconfigure.EnableAutoConfiguration=cn.sp.sharding.config.ShardingAutoConfig
然后需要在pom.xml文件引入sharding-jbc依赖和工具包guava。
<properties>
<java.version>8</java.version>
<spring-boot.version>2.4.0</spring-boot.version>
<sharding-jdbc.version>4.1.1</sharding-jdbc.version>
</properties>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>sharding-jdbc-core</artifactId>
<version>${sharding-jdbc.version}</version>
</dependency>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>18.0</version>
</dependency>
3.2 注入ShardingDataSource
分库分表配置这块,为了方便自定义配置前缀,创建ShardingRuleConfigurationProperties类继承sharding-jbc的YamlShardingRuleConfiguration类即可,代码如下:
/**
* @author Ship
* @version 1.0.0
* @description:
* @date 2023/06/06
*/
@ConfigurationProperties(prefix = CommonConstants.COMMON_CONFIG_PREFIX + ".config")
public class ShardingRuleConfigurationProperties extends YamlShardingRuleConfiguration {
}
同时sharding-jbc支持自定义一些properties属性,需要单独创建类ConfigMapConfigurationProperties
/**
* @Author: Ship
* @Description:
* @Date: Created in 2023/6/6
*/
@ConfigurationProperties(prefix = CommonConstants.COMMON_CONFIG_PREFIX + ".map")
public class ConfigMapConfigurationProperties {
private Properties props = new Properties();
public Properties getProps() {
return props;
}
public void setProps(Properties props) {
this.props = props;
}
}
官方提供了ShardingDataSourceFactory工厂类来创建数据源,但是查看其源码发现createDataSource方法的参数是ShardingRuleConfiguration类,而不是YamlShardingRuleConfiguration。
@NoArgsConstructor(access = AccessLevel.PRIVATE)
public final class ShardingDataSourceFactory {
/**
* Create sharding data source.
*
* @param dataSourceMap data source map
* @param shardingRuleConfig rule configuration for databases and tables sharding
* @param props properties for data source
* @return sharding data source
* @throws SQLException SQL exception
*/
public static DataSource createDataSource(
final Map<String, DataSource> dataSourceMap, final ShardingRuleConfiguration shardingRuleConfig, final Properties props) throws SQLException {
return new ShardingDataSource(dataSourceMap, new ShardingRule(shardingRuleConfig, dataSourceMap.keySet()), props);
}
}
该如何解决配置类参数转换的问题呢?
幸好查找官方文档发现sharding-jdbc提供了YamlSwapper类来实现yaml配置和核心配置的转换
/**
* YAML configuration swapper.
*
* @param <Y> type of YAML configuration
* @param <T> type of swapped object
*/
public interface YamlSwapper<Y extends YamlConfiguration, T> {
/**
* Swap to YAML configuration.
*
* @param data data to be swapped
* @return YAML configuration
*/
Y swap(T data);
/**
* Swap from YAML configuration to object.
*
* @param yamlConfiguration YAML configuration
* @return swapped object
*/
T swap(Y yamlConfiguration);
}
ShardingRuleConfigurationYamlSwapper就是YamlSwapper的其中一个实现类。
于是,ShardingAutoConfig的最终代码如下:
/**
* @author Ship
* @version 1.0.0
* @description:
* @date 2023/06/06
*/
@AutoConfigureBefore(name = CommonConstants.MYBATIS_PLUS_CONFIG_CLASS)
@AutoConfigureAfter(name = "com.alibaba.cloud.nacos.NacosConfigAutoConfiguration")
@Configuration
@EnableConfigurationProperties(value = {ShardingRuleConfigurationProperties.class, ConfigMapConfigurationProperties.class})
@Import(DataSourceHealthConfig.class)
public class ShardingAutoConfig {
private Map<String, DataSource> dataSourceMap = new HashMap<>();
@RefreshScope
@ConditionalOnMissingBean
@Bean
public DataSource shardingDataSource(@Autowired ShardingRuleConfigurationProperties configurationProperties,
@Autowired ConfigMapConfigurationProperties configMapConfigurationProperties,
@Autowired Environment environment) throws SQLException {
setDataSourceMap(environment);
ShardingRuleConfigurationYamlSwapper yamlSwapper = new ShardingRuleConfigurationYamlSwapper();
ShardingRuleConfiguration shardingRuleConfiguration = yamlSwapper.swap(configurationProperties);
return ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfiguration, configMapConfigurationProperties.getProps());
}
private void setDataSourceMap(Environment environment) {
dataSourceMap.clear();
String names = environment.getProperty(CommonConstants.DATA_SOURCE_CONFIG_PREFIX + ".names");
for (String name : names.split(",")) {
try {
String propertiesPrefix = CommonConstants.DATA_SOURCE_CONFIG_PREFIX + "." + name;
Map<String, Object> dataSourceProps = PropertyUtil.handle(environment, propertiesPrefix, Map.class);
// 反射创建数据源
DataSource dataSource = DataSourceUtil.getDataSource(dataSourceProps.get("type").toString(), dataSourceProps);
dataSourceMap.put(name, dataSource);
} catch (ReflectiveOperationException e) {
e.printStackTrace();
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
利用反射创建数据源,就可以解决支持多种数据源的问题。
添加@RefreshScope注解是为了在使用配置中心(如Nacos)时,修改了分库分表配置时,自动重新生成新的数据源Bean,避免项目重启。其动态刷新配置实现原理,有兴趣的可以查看这篇文章https://developer.aliyun.com/article/1238511。
3.3 自定义主键生成策略
sharding-jdbc提供了UUID和Snowflake两种默认实现,但是自定义主键生成策略更加灵活,方便根据自己的需求调整,接下来介绍如何自定义主键生成策略。
因为我们也是用的雪花算法,所以可以直接用sharding-jdbc提供的雪花算法类,KeyGeneratorFactory负责生成雪花算法实现类的实例,采用双重校验加锁的单例模式。
public final class KeyGeneratorFactory {
/**
* 使用shardingsphere提供的雪花算法实现
*/
private static volatile SnowflakeShardingKeyGenerator keyGenerator = null;
private KeyGeneratorFactory() {
}
/**
* 单例模式
*
* @return
*/
public static SnowflakeShardingKeyGenerator getInstance() {
if (keyGenerator == null) {
synchronized (KeyGeneratorFactory.class) {
if (keyGenerator == null) {
// 用ip地址当作机器id,机器范围0-1024
Long workerId = Long.valueOf(IpUtil.getLocalIpAddress().replace(".", "")) % 1024;
keyGenerator = new SnowflakeShardingKeyGenerator();
Properties properties = new Properties();
properties.setProperty("worker.id", workerId.toString());
keyGenerator.setProperties(properties);
}
}
}
return keyGenerator;
}
}
雪花算法是由1bit 不用 + 41bit时间戳+10bit工作机器id+12bit序列号组成的,所以为了防止不同节点生成的id重复需要设置机器id,机器id的范围是0-1024,这里是用IP地址转数字取模1024来计算机器id,存在很小概率的重复,也可以用redis来生成机器id(参考雪花算法ID重复问题的解决方案 )。
注意: 雪花算法坑其实挺多的,除了系统时间回溯会导致id重复,单节点并发过高也会导致重复(序列位只有12位代表1ms内最多支持4096个并发)。
查看源码可知自定义主键生成器是通过SPI实现的,实现ShardingKeyGenerator接口即可。
package org.apache.shardingsphere.spi.keygen;
import org.apache.shardingsphere.spi.TypeBasedSPI;
/**
* Key generator.
*/
public interface ShardingKeyGenerator extends TypeBasedSPI {
/**
* Generate key.
*
* @return generated key
*/
Comparable<?> generateKey();
}
- 自定义主键生成器DistributedKeyGenerator
/**
* @Author: Ship
* @Description: 分布式id生成器,雪花算法实现
* @Date: Created in 2023/6/8
*/
public class DistributedKeyGenerator implements ShardingKeyGenerator {
@Override
public Comparable<?> generateKey() {
return KeyGeneratorFactory.getInstance().generateKey();
}
@Override
public String getType() {
return "DISTRIBUTED";
}
@Override
public Properties getProperties() {
return null;
}
@Override
public void setProperties(Properties properties) {
}
}
- 创建META-INF/services文件夹,然后在文件夹下创建org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator文件,内容如下:
cn.sp.sharding.key.DistributedKeyGenerator
- yaml文件配置即可
3.4 遗留问题
Spring Boot会在项目启动时执行一条sql语句检查数据源是否可用,因为ShardingDataSource只是对真实数据源进行了封装,没有完全实现Datasouce接口规范,所以会在启动时报错DataSource health check failed,为此需要重写数据源健康检查的逻辑。
创建DataSourceHealthConfig类继承DataSourceHealthContributorAutoConfiguration,然后重写createIndicator方法来重新设置校验sql语句。
/**
* @Author: Ship
* @Description:
* @Date: Created in 2023/6/7
*/
public class DataSourceHealthConfig extends DataSourceHealthContributorAutoConfiguration {
private static String validQuery = "SELECT 1";
public DataSourceHealthConfig(Map<String, DataSource> dataSources, ObjectProvider<DataSourcePoolMetadataProvider> metadataProviders) {
super(dataSources, metadataProviders);
}
@Override
protected AbstractHealthIndicator createIndicator(DataSource source) {
DataSourceHealthIndicator healthIndicator = (DataSourceHealthIndicator) super.createIndicator(source);
if (StringUtils.hasText(validQuery)) {
healthIndicator.setQuery(validQuery);
}
return healthIndicator;
}
}
最后使用@Import注解来注入
@AutoConfigureBefore(name = CommonConstants.MYBATIS_PLUS_CONFIG_CLASS)
@Configuration
@EnableConfigurationProperties(value = {ShardingRuleConfigurationProperties.class, ConfigMapConfigurationProperties.class})
@Import(DataSourceHealthConfig.class)
public class ShardingAutoConfig implements EnvironmentAware {
四、测试
假设有个订单表数据量很大了需要分表,为了方便水平扩展,根据订单的创建时间分表,分表规则如下:
t_order_${创建时间所在年}_${创建时间所在季度}
订单表结构如下
CREATE TABLE `t_order_2022_3` (
`id` bigint(20) unsigned NOT NULL COMMENT '主键',
`order_code` varchar(32) DEFAULT NULL COMMENT '订单号',
`create_time` bigint(20) NOT NULL COMMENT '创建时间',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
- 创建数据库my_springboot,并创建8张订单表t_order_2022_1至t_order_2023_4
- 创建SpringBoot项目ship-sharding-example,并添加mybatis等相关依赖
<dependency>
<groupId>org.mybatis.spring.boot</groupId>
<artifactId>mybatis-spring-boot-starter</artifactId>
<version>${mybatis.version}</version>
</dependency>
<dependency>
<groupId>com.baomidou</groupId>
<artifactId>mybatis-plus-boot-starter</artifactId>
<version>3.0.1</version>
<exclusions>
<exclusion>
<groupId>org.mybatis</groupId>
<artifactId>mybatis</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid-spring-boot-starter</artifactId>
<version>${druid.version}</version>
</dependency>
<dependency>
<groupId>cn.sp</groupId>
<artifactId>ship-sharding-spring-boot-starter</artifactId>
<version>1.0-SNAPSHOT</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
</dependency>
- 创建订单实体Order和OrderMapper,代码比较简单省略
- 自定义分表算法需要实现PreciseShardingAlgorithm和RangeShardingAlgorithm接口的方法,它俩区别如下
接口 | 描述 |
---|---|
PreciseShardingAlgorithm | 定义等值查询条件下的分表算法 |
RangeShardingAlgorithm | 定义范围查询条件下的分表算法 |
创建算法类MyTableShardingAlgorithm
/**
* @Author: Ship
* @Description:
* @Date: Created in 2023/6/8
*/
@Slf4j
public class MyTableShardingAlgorithm implements PreciseShardingAlgorithm<Long>, RangeShardingAlgorithm<Long> {
private static final String TABLE_NAME_PREFIX = "t_order_";
@Override
public String doSharding(Collection<String> availableTableNames, PreciseShardingValue<Long> preciseShardingValue) {
Long createTime = preciseShardingValue.getValue();
if (createTime == null) {
throw new ShipShardingException("创建时间不能为空!");
}
LocalDate localDate = DateUtils.longToLocalDate(createTime);
final String year = localDate.getYear() + "";
Integer quarter = DateUtils.getQuarter(localDate);
for (String tableName : availableTableNames) {
String dateStr = tableName.replace(TABLE_NAME_PREFIX, "");
String[] dateArr = dateStr.split("_");
if (dateArr[0].equals(year) && dateArr[1].equals(quarter.toString())) {
return tableName;
}
}
log.error("分表算法对应的表不存在!");
throw new ShipShardingException("分表算法对应的表不存在!");
}
@Override
public Collection<String> doSharding(Collection<String> availableTableNames, RangeShardingValue<Long> rangeShardingValue) {
//获取查询条件中范围值
Range<Long> valueRange = rangeShardingValue.getValueRange();
// 上限值
Long upperEndpoint = valueRange.upperEndpoint();
// 下限值
Long lowerEndpoint = valueRange.lowerEndpoint();
List<String> tableNames = Lists.newArrayList();
for (String tableName : availableTableNames) {
String dateStr = tableName.replace(MyTableShardingAlgorithm.TABLE_NAME_PREFIX, "");
String[] dateArr = dateStr.split("_");
String year = dateArr[0];
String quarter = dateArr[1];
Long[] minAndMaxTime = DateUtils.getMinAndMaxTime(year, quarter);
Long minTime = minAndMaxTime[0];
Long maxTime = minAndMaxTime[1];
if (valueRange.hasLowerBound() && valueRange.hasUpperBound()) {
// between and
if (minTime.compareTo(lowerEndpoint) <= 0 && upperEndpoint.compareTo(maxTime) <= 0) {
tableNames.add(tableName);
}
} else if (valueRange.hasLowerBound() && !valueRange.hasUpperBound()) {
if (maxTime.compareTo(lowerEndpoint) > 0) {
tableNames.add(tableName);
}
} else {
if (upperEndpoint.compareTo(minTime) > 0) {
tableNames.add(tableName);
}
}
}
if (tableNames.size() == 0) {
log.error("分表算法对应的表不存在!");
throw new ShipShardingException("分表算法对应的表不存在!");
}
return tableNames;
}
}
- 在application.yaml上添加数据库配置和分表配置
spring:
application:
name: ship-sharding-example
mybatis-plus:
base-package: cn.sp.sharding.dao
mapper-locations: classpath*:/mapper/*Mapper.xml
configuration:
#开启自动驼峰命名规则(camel case)映射
map-underscore-to-camel-case: true
#延迟加载,需要和lazy-loading-enabled一起使用
aggressive-lazy-loading: true
lazy-loading-enabled: true
#关闭一级缓存
local-cache-scope: statement
#关闭二级级缓存
cache-enabled: false
ship:
sharding:
jdbc:
datasource:
names: ds0
ds0:
driver-class-name: com.mysql.cj.jdbc.Driver
type: com.alibaba.druid.pool.DruidDataSource
url: jdbc:mysql://127.0.0.1:3306/my_springboot?autoReconnect=true&useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&useSSL=false
username: root
password: 1234
initial-size: 5
minIdle: 5
maxActive: 20
maxWait: 60000
timeBetweenEvictionRunsMillis: 60000
minEvictableIdleTimeMillis: 300000
validationQuery: SELECT 1 FROM DUAL
testWhileIdle: true
testOnBorrow: false
testOnReturn: false
poolPreparedStatements: true
maxPoolPreparedStatementPerConnectionSize: 20
useGlobalDataSourceStat: true
connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=2000;druid.mysql.usePingMethod=false
config:
binding-tables: t_order
tables:
t_order:
actual-data-nodes: ds0.t_order_${2022..2023}_${1..4}
# 配置主键生成策略
key-generator:
type: DISTRIBUTED
column: id
table-strategy:
standard:
sharding-column: create_time
# 配置分表算法
precise-algorithm-class-name: cn.sp.sharding.algorithm.MyTableShardingAlgorithm
range-algorithm-class-name: cn.sp.sharding.algorithm.MyTableShardingAlgorithm
- 现在可以进行测试了,首先写一个单元测试测试数据插入情况。
@Test
public void testInsert() {
Order order = new Order();
order.setOrderCode("OC001");
order.setCreateTime(System.currentTimeMillis());
orderMapper.insert(order);
}
运行testInsert()方法,打开t_order_2023_2表发现已经有了一条订单数据
并且该数据的create_time是1686383781371,转换为时间为2023-06-10 15:56:21,刚好对应2023年第二季度,说明数据正确的路由到了对应的表里。
然后测试下数据查询情况
@Test
public void testQuery(){
QueryWrapper<Order> wrapper = new QueryWrapper<>();
wrapper.lambda().eq(Order::getOrderCode,"OC001");
List<Order> orders = orderMapper.selectList(wrapper);
System.out.println(JSONUtil.toJsonStr(orders));
}
运行testQuery()方法后可以在控制台看到输出了订单报文,说明查询也没问题。
[{"id":1667440550397132802,"orderCode":"OC001","createTime":1686383781371}]
五、总结
本文代码已经上传到github,后续会把ship-sharding-spring-boot-starter上传到maven中央仓库方便使用,如果觉得对你有用的话希望可以点个赞让更多人看到😏