分库分表用这个就够了

一、前言

2018年写过一篇分库分表的文章《SpringBoot使用sharding-jdbc分库分表》,但是存在很多不完美的地方比如:

  • sharding-jdbc的版本(1.4.2)过低,现在github上的最新版本都是5.3.2了,很多用法和API都过时了。
  • 分库分表配置采用Java硬编码的方式不够灵活
  • 持久层使用的是spring-boot-starter-data-jpa,而不是主流的mybatis+mybatis-plus+druid-spring-boot-stater
  • 没有支持自定义主键生成策略

二、设计思路

针对上述问题,本人计划开源一个通用的分库分表starter,具备以下特性:

  1. 基于ShardingSphere-JDBC版本4.1.1,官方支持的特性我们都支持
  2. 支持yaml文件配置,无需编码开箱即用
  3. 支持多种数据源,整合主流的mybatis
  4. 支持自定义主键生成策略,并提供默认的雪花算法实现
  5. 支持Nacos配置中心,动态刷新配置无需重启

通过查看官方文档,可以发现starter的核心逻辑就是获取分库分表等配置,然后在自动配置类创建数据源注入Spring容器即可。

三、编码实现

3.1 starter工程搭建

首先创建一个spring-boot-starter工程ship-sharding-spring-boot-starter,不会的小伙伴可以参考以前写的教程《【SpringBoot】编写一个自己的Starter》。

创建自动配置类cn.sp.sharding.config.ShardingAutoConfig,并在resources/META-INF/spring.factories文件中配置自动配置类的全路径。

org.springframework.boot.autoconfigure.EnableAutoConfiguration=cn.sp.sharding.config.ShardingAutoConfig

然后需要在pom.xml文件引入sharding-jbc依赖和工具包guava。

    <properties>
        <java.version>8</java.version>
        <spring-boot.version>2.4.0</spring-boot.version>
        <sharding-jdbc.version>4.1.1</sharding-jdbc.version>
    </properties>
    
      <dependency>
            <groupId>org.apache.shardingsphere</groupId>
            <artifactId>sharding-jdbc-core</artifactId>
            <version>${sharding-jdbc.version}</version>
        </dependency>

        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>18.0</version>
        </dependency>

3.2 注入ShardingDataSource

分库分表配置这块,为了方便自定义配置前缀,创建ShardingRuleConfigurationProperties类继承sharding-jbc的YamlShardingRuleConfiguration类即可,代码如下:

/**
 * @author Ship
 * @version 1.0.0
 * @description:
 * @date 2023/06/06
 */
@ConfigurationProperties(prefix = CommonConstants.COMMON_CONFIG_PREFIX + ".config")
public class ShardingRuleConfigurationProperties extends YamlShardingRuleConfiguration {


}

同时sharding-jbc支持自定义一些properties属性,需要单独创建类ConfigMapConfigurationProperties

/**
 * @Author: Ship
 * @Description:
 * @Date: Created in 2023/6/6
 */
@ConfigurationProperties(prefix = CommonConstants.COMMON_CONFIG_PREFIX + ".map")
public class ConfigMapConfigurationProperties {

    private Properties props = new Properties();


    public Properties getProps() {
        return props;
    }

    public void setProps(Properties props) {
        this.props = props;
    }
}

官方提供了ShardingDataSourceFactory工厂类来创建数据源,但是查看其源码发现createDataSource方法的参数是ShardingRuleConfiguration类,而不是YamlShardingRuleConfiguration

@NoArgsConstructor(access = AccessLevel.PRIVATE)
public final class ShardingDataSourceFactory {
    
    /**
     * Create sharding data source.
     *
     * @param dataSourceMap data source map
     * @param shardingRuleConfig rule configuration for databases and tables sharding
     * @param props properties for data source
     * @return sharding data source
     * @throws SQLException SQL exception
     */
    public static DataSource createDataSource(
            final Map<String, DataSource> dataSourceMap, final ShardingRuleConfiguration shardingRuleConfig, final Properties props) throws SQLException {
        return new ShardingDataSource(dataSourceMap, new ShardingRule(shardingRuleConfig, dataSourceMap.keySet()), props);
    }
}

该如何解决配置类参数转换的问题呢?

幸好查找官方文档发现sharding-jdbc提供了YamlSwapper类来实现yaml配置和核心配置的转换

/**
 * YAML configuration swapper.
 *
 * @param <Y> type of YAML configuration
 * @param <T> type of swapped object
 */
public interface YamlSwapper<Y extends YamlConfiguration, T> {
    
    /**
     * Swap to YAML configuration.
     *
     * @param data data to be swapped
     * @return YAML configuration
     */
    Y swap(T data);
    
    /**
     * Swap from YAML configuration to object.
     *
     * @param yamlConfiguration YAML configuration
     * @return swapped object
     */
    T swap(Y yamlConfiguration);
}

ShardingRuleConfigurationYamlSwapper就是YamlSwapper的其中一个实现类。

于是,ShardingAutoConfig的最终代码如下:

/**
 * @author Ship
 * @version 1.0.0
 * @description:
 * @date 2023/06/06
 */
@AutoConfigureBefore(name = CommonConstants.MYBATIS_PLUS_CONFIG_CLASS)
@AutoConfigureAfter(name = "com.alibaba.cloud.nacos.NacosConfigAutoConfiguration")
@Configuration
@EnableConfigurationProperties(value = {ShardingRuleConfigurationProperties.class, ConfigMapConfigurationProperties.class})
@Import(DataSourceHealthConfig.class)
public class ShardingAutoConfig {


    private Map<String, DataSource> dataSourceMap = new HashMap<>();

    @RefreshScope
    @ConditionalOnMissingBean
    @Bean
    public DataSource shardingDataSource(@Autowired ShardingRuleConfigurationProperties configurationProperties,
                                         @Autowired ConfigMapConfigurationProperties configMapConfigurationProperties,
                                         @Autowired Environment environment) throws SQLException {
        setDataSourceMap(environment);
        ShardingRuleConfigurationYamlSwapper yamlSwapper = new ShardingRuleConfigurationYamlSwapper();
        ShardingRuleConfiguration shardingRuleConfiguration = yamlSwapper.swap(configurationProperties);
        return ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfiguration, configMapConfigurationProperties.getProps());
    }


    private void setDataSourceMap(Environment environment) {
        dataSourceMap.clear();
        String names = environment.getProperty(CommonConstants.DATA_SOURCE_CONFIG_PREFIX + ".names");
        for (String name : names.split(",")) {
            try {
                String propertiesPrefix = CommonConstants.DATA_SOURCE_CONFIG_PREFIX + "." + name;
                Map<String, Object> dataSourceProps = PropertyUtil.handle(environment, propertiesPrefix, Map.class);
                // 反射创建数据源
                DataSource dataSource = DataSourceUtil.getDataSource(dataSourceProps.get("type").toString(), dataSourceProps);
                dataSourceMap.put(name, dataSource);
            } catch (ReflectiveOperationException e) {
                e.printStackTrace();
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }
}


利用反射创建数据源,就可以解决支持多种数据源的问题。

添加@RefreshScope注解是为了在使用配置中心(如Nacos)时,修改了分库分表配置时,自动重新生成新的数据源Bean,避免项目重启。其动态刷新配置实现原理,有兴趣的可以查看这篇文章https://developer.aliyun.com/article/1238511

3.3 自定义主键生成策略

sharding-jdbc提供了UUID和Snowflake两种默认实现,但是自定义主键生成策略更加灵活,方便根据自己的需求调整,接下来介绍如何自定义主键生成策略。

因为我们也是用的雪花算法,所以可以直接用sharding-jdbc提供的雪花算法类,KeyGeneratorFactory负责生成雪花算法实现类的实例,采用双重校验加锁的单例模式。

public final class KeyGeneratorFactory {
    /**
     * 使用shardingsphere提供的雪花算法实现
     */
    private static volatile SnowflakeShardingKeyGenerator keyGenerator = null;

    private KeyGeneratorFactory() {

    }

    /**
     * 单例模式
     *
     * @return
     */
    public static SnowflakeShardingKeyGenerator getInstance() {
        if (keyGenerator == null) {
            synchronized (KeyGeneratorFactory.class) {
                if (keyGenerator == null) {
                    // 用ip地址当作机器id,机器范围0-1024
                    Long workerId = Long.valueOf(IpUtil.getLocalIpAddress().replace(".", "")) % 1024;
                    keyGenerator = new SnowflakeShardingKeyGenerator();
                    Properties properties = new Properties();
                    properties.setProperty("worker.id", workerId.toString());
                    keyGenerator.setProperties(properties);
                }
            }
        }
        return keyGenerator;
    }
}

雪花算法是由1bit 不用 + 41bit时间戳+10bit工作机器id+12bit序列号组成的,所以为了防止不同节点生成的id重复需要设置机器id,机器id的范围是0-1024,这里是用IP地址转数字取模1024来计算机器id,存在很小概率的重复,也可以用redis来生成机器id(参考雪花算法ID重复问题的解决方案 )。

注意: 雪花算法坑其实挺多的,除了系统时间回溯会导致id重复,单节点并发过高也会导致重复(序列位只有12位代表1ms内最多支持4096个并发)。

查看源码可知自定义主键生成器是通过SPI实现的,实现ShardingKeyGenerator接口即可。

package org.apache.shardingsphere.spi.keygen;

import org.apache.shardingsphere.spi.TypeBasedSPI;

/**
 * Key generator.
 */
public interface ShardingKeyGenerator extends TypeBasedSPI {
    
    /**
     * Generate key.
     * 
     * @return generated key
     */
    Comparable<?> generateKey();
}
  1. 自定义主键生成器DistributedKeyGenerator
/**
 * @Author: Ship
 * @Description: 分布式id生成器,雪花算法实现
 * @Date: Created in 2023/6/8
 */
public class DistributedKeyGenerator implements ShardingKeyGenerator {

    @Override
    public Comparable<?> generateKey() {
        return KeyGeneratorFactory.getInstance().generateKey();
    }

    @Override
    public String getType() {
        return "DISTRIBUTED";
    }

    @Override
    public Properties getProperties() {
        return null;
    }

    @Override
    public void setProperties(Properties properties) {

    }
}
  1. 创建META-INF/services文件夹,然后在文件夹下创建org.apache.shardingsphere.spi.keygen.ShardingKeyGenerator文件,内容如下:
 cn.sp.sharding.key.DistributedKeyGenerator
  1. yaml文件配置即可

3.4 遗留问题

Spring Boot会在项目启动时执行一条sql语句检查数据源是否可用,因为ShardingDataSource只是对真实数据源进行了封装,没有完全实现Datasouce接口规范,所以会在启动时报错DataSource health check failed,为此需要重写数据源健康检查的逻辑。

创建DataSourceHealthConfig类继承DataSourceHealthContributorAutoConfiguration,然后重写createIndicator方法来重新设置校验sql语句

/**
 * @Author: Ship
 * @Description:
 * @Date: Created in 2023/6/7
 */
public class DataSourceHealthConfig extends DataSourceHealthContributorAutoConfiguration {

    private static String validQuery = "SELECT 1";

    public DataSourceHealthConfig(Map<String, DataSource> dataSources, ObjectProvider<DataSourcePoolMetadataProvider> metadataProviders) {
        super(dataSources, metadataProviders);
    }

    @Override
    protected AbstractHealthIndicator createIndicator(DataSource source) {
        DataSourceHealthIndicator healthIndicator = (DataSourceHealthIndicator) super.createIndicator(source);
        if (StringUtils.hasText(validQuery)) {
            healthIndicator.setQuery(validQuery);
        }
        return healthIndicator;
    }
}

最后使用@Import注解来注入

@AutoConfigureBefore(name = CommonConstants.MYBATIS_PLUS_CONFIG_CLASS)
@Configuration
@EnableConfigurationProperties(value = {ShardingRuleConfigurationProperties.class, ConfigMapConfigurationProperties.class})
@Import(DataSourceHealthConfig.class)
public class ShardingAutoConfig implements EnvironmentAware {

四、测试

假设有个订单表数据量很大了需要分表,为了方便水平扩展,根据订单的创建时间分表,分表规则如下:

t_order_${创建时间所在年}_${创建时间所在季度}

订单表结构如下

CREATE TABLE `t_order_2022_3` (
  `id` bigint(20) unsigned NOT NULL COMMENT '主键',
  `order_code` varchar(32) DEFAULT NULL COMMENT '订单号',
  `create_time` bigint(20) NOT NULL COMMENT '创建时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
  1. 创建数据库my_springboot,并创建8张订单表t_order_2022_1至t_order_2023_4

订单表

  1. 创建SpringBoot项目ship-sharding-example,并添加mybatis等相关依赖
  <dependency>
            <groupId>org.mybatis.spring.boot</groupId>
            <artifactId>mybatis-spring-boot-starter</artifactId>
            <version>${mybatis.version}</version>
        </dependency>


        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>mybatis-plus-boot-starter</artifactId>
            <version>3.0.1</version>
            <exclusions>
                <exclusion>
                    <groupId>org.mybatis</groupId>
                    <artifactId>mybatis</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid-spring-boot-starter</artifactId>
            <version>${druid.version}</version>
        </dependency>

        <dependency>
            <groupId>cn.sp</groupId>
            <artifactId>ship-sharding-spring-boot-starter</artifactId>
            <version>1.0-SNAPSHOT</version>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
        </dependency>

  1. 创建订单实体Order和OrderMapper,代码比较简单省略
  2. 自定义分表算法需要实现PreciseShardingAlgorithm和RangeShardingAlgorithm接口的方法,它俩区别如下
接口 描述
PreciseShardingAlgorithm 定义等值查询条件下的分表算法
RangeShardingAlgorithm 定义范围查询条件下的分表算法

创建算法类MyTableShardingAlgorithm

/**
 * @Author: Ship
 * @Description:
 * @Date: Created in 2023/6/8
 */
@Slf4j
public class MyTableShardingAlgorithm implements PreciseShardingAlgorithm<Long>, RangeShardingAlgorithm<Long> {

    private static final String TABLE_NAME_PREFIX = "t_order_";

    @Override
    public String doSharding(Collection<String> availableTableNames, PreciseShardingValue<Long> preciseShardingValue) {
        Long createTime = preciseShardingValue.getValue();
        if (createTime == null) {
            throw new ShipShardingException("创建时间不能为空!");
        }
        LocalDate localDate = DateUtils.longToLocalDate(createTime);
        final String year = localDate.getYear() + "";
        Integer quarter = DateUtils.getQuarter(localDate);
        for (String tableName : availableTableNames) {
            String dateStr = tableName.replace(TABLE_NAME_PREFIX, "");
            String[] dateArr = dateStr.split("_");
            if (dateArr[0].equals(year) && dateArr[1].equals(quarter.toString())) {
                return tableName;
            }
        }
        log.error("分表算法对应的表不存在!");
        throw new ShipShardingException("分表算法对应的表不存在!");
    }

    @Override
    public Collection<String> doSharding(Collection<String> availableTableNames, RangeShardingValue<Long> rangeShardingValue) {
        //获取查询条件中范围值
        Range<Long> valueRange = rangeShardingValue.getValueRange();
        // 上限值
        Long upperEndpoint = valueRange.upperEndpoint();
        // 下限值
        Long lowerEndpoint = valueRange.lowerEndpoint();

        List<String> tableNames = Lists.newArrayList();
        for (String tableName : availableTableNames) {
            String dateStr = tableName.replace(MyTableShardingAlgorithm.TABLE_NAME_PREFIX, "");
            String[] dateArr = dateStr.split("_");
            String year = dateArr[0];
            String quarter = dateArr[1];
            Long[] minAndMaxTime = DateUtils.getMinAndMaxTime(year, quarter);
            Long minTime = minAndMaxTime[0];
            Long maxTime = minAndMaxTime[1];
            if (valueRange.hasLowerBound() && valueRange.hasUpperBound()) {
                // between and
                if (minTime.compareTo(lowerEndpoint) <= 0 && upperEndpoint.compareTo(maxTime) <= 0) {
                    tableNames.add(tableName);
                }
            } else if (valueRange.hasLowerBound() && !valueRange.hasUpperBound()) {
                if (maxTime.compareTo(lowerEndpoint) > 0) {
                    tableNames.add(tableName);
                }
            } else {
                if (upperEndpoint.compareTo(minTime) > 0) {
                    tableNames.add(tableName);
                }
            }
        }
        if (tableNames.size() == 0) {
            log.error("分表算法对应的表不存在!");
            throw new ShipShardingException("分表算法对应的表不存在!");
        }
        return tableNames;
    }
}

  1. 在application.yaml上添加数据库配置和分表配置
spring:
  application:
    name: ship-sharding-example


mybatis-plus:
  base-package: cn.sp.sharding.dao
  mapper-locations: classpath*:/mapper/*Mapper.xml
  configuration:
    #开启自动驼峰命名规则(camel case)映射
    map-underscore-to-camel-case: true
    #延迟加载,需要和lazy-loading-enabled一起使用
    aggressive-lazy-loading: true
    lazy-loading-enabled: true
    #关闭一级缓存
    local-cache-scope: statement
    #关闭二级级缓存
    cache-enabled: false

ship:
  sharding:
    jdbc:
      datasource:
        names: ds0
        ds0:
          driver-class-name: com.mysql.cj.jdbc.Driver
          type: com.alibaba.druid.pool.DruidDataSource
          url: jdbc:mysql://127.0.0.1:3306/my_springboot?autoReconnect=true&useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&useSSL=false
          username: root
          password: 1234
          initial-size: 5
          minIdle: 5
          maxActive: 20
          maxWait: 60000
          timeBetweenEvictionRunsMillis: 60000
          minEvictableIdleTimeMillis: 300000
          validationQuery: SELECT 1 FROM DUAL
          testWhileIdle: true
          testOnBorrow: false
          testOnReturn: false
          poolPreparedStatements: true
          maxPoolPreparedStatementPerConnectionSize: 20
          useGlobalDataSourceStat: true
          connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=2000;druid.mysql.usePingMethod=false
      config:
        binding-tables: t_order
        tables:
          t_order:
            actual-data-nodes: ds0.t_order_${2022..2023}_${1..4}
            # 配置主键生成策略
            key-generator:
              type: DISTRIBUTED
              column: id
            table-strategy:
              standard:
                sharding-column: create_time
                # 配置分表算法
                precise-algorithm-class-name: cn.sp.sharding.algorithm.MyTableShardingAlgorithm
                range-algorithm-class-name: cn.sp.sharding.algorithm.MyTableShardingAlgorithm
  1. 现在可以进行测试了,首先写一个单元测试测试数据插入情况。
 @Test
    public void testInsert() {
        Order order = new Order();
        order.setOrderCode("OC001");
        order.setCreateTime(System.currentTimeMillis());
        orderMapper.insert(order);
    }

运行testInsert()方法,打开t_order_2023_2表发现已经有了一条订单数据

image

并且该数据的create_time是1686383781371,转换为时间为2023-06-10 15:56:21,刚好对应2023年第二季度,说明数据正确的路由到了对应的表里。

然后测试下数据查询情况

@Test
    public void testQuery(){
        QueryWrapper<Order> wrapper = new QueryWrapper<>();
        wrapper.lambda().eq(Order::getOrderCode,"OC001");
        List<Order> orders = orderMapper.selectList(wrapper);
        System.out.println(JSONUtil.toJsonStr(orders));
    }

运行testQuery()方法后可以在控制台看到输出了订单报文,说明查询也没问题。

[{"id":1667440550397132802,"orderCode":"OC001","createTime":1686383781371}]

五、总结

本文代码已经上传到github,后续会把ship-sharding-spring-boot-starter上传到maven中央仓库方便使用,如果觉得对你有用的话希望可以点个赞让更多人看到😏

posted @ 2023-06-12 10:17  烟味i  阅读(2449)  评论(14编辑  收藏  举报