把博客园图标替换成自己的图标
把博客园图标替换成自己的图标end

CF1656H Equal LCM Subsets

题面传送门

首先有一个暴力的想法:依次查看左边每个数,对于左边每个数,计算右边未被删除的点与这个点的 \(\gcd\)\(LCM\),如果这个 \(LCM\) 等于当前这个数,说明这个点可以被左边的 \(LCM\) 整除,否则说明这个点不能整除,需要删掉。对于右边同理。这样暴力删除复杂度是 \(O(n^3\log A)\) 的。

考虑删除一个数的时候对这半边的影响,这只会让某些质因子的幂次从最大值变成次大值。考虑两个数 \(a,b\)\(\frac{a}{\gcd(a,b)}\) 中的质因子是 \(a\) 严格幂次大于 \(b\) 的质因子,可以提取出这些质因子,就得到了 \(a\) 对于 \(LCM\) 的贡献。将这些贡献换成次大值之后遍历右边每个数,如果这个数除掉次大值之后仍然和原来的最大值 \(\gcd>1\),则右边的这样的数都需要删掉。因此我们可以以 \(O(n\log A)\) 的代价删掉一个数,总复杂度 \(O(n^2\log A)\)

因为 \(A\) 特别大,并且取 \(\gcd\) 的次数有点多,跑得很慢。submission

posted @ 2023-08-16 18:59  275307894a  阅读(41)  评论(0编辑  收藏  举报
浏览器标题切换
浏览器标题切换end