luogu P3488 [POI2009]LYZ-Ice Skates
题面传送门
好像从来不知道还有一个完备匹配的hall定理来着?
hall定理:考虑所有左部点集合\(S\),记流量为\(T1\),再考虑其对应的右部点的集合\(T\),记流量为\(T2\),二分图有完备匹配充要于对于所有\(S\)都有\(T1\leq T2\)
首先在这道题中,最优的这种\(S\)肯定是一段子段,因为可以在不改变对应右部点集合的情况下扩大左部点。
然后就相当于将每个数减\(k\)后找到最大的子段和,满足其\(\leq dk\)就有解,否则无解。
线段树随便维护即可,时间复杂度\(O(n\log n)\)
code:
#include<bits/stdc++.h>
#define I inline
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define abs(x) ((x)>0?(x):-(x))
#define ll long long
#define db double
#define lb long db
#define N (200000+5)
#define M ((1<<20)+5)
#define Ks (12+5)
#define mod 998244353
#define Mod (mod-1)
#define eps (1e-9)
#define ull unsigned ll
#define it iterator
#define Gc() getchar()
#define Me(x,y) memset(x,y,sizeof(x))
#define Mc(x,y) memcpy(x,y,sizeof(x))
#define d(x,y) (n*(x-1)+(y))
#define R(n) (rand()*rand()%(n)+1)
#define Pc(x) putchar(x)
#define LB lower_bound
#define UB upper_bound
#define PB push_back
using namespace std;
int n,m,k,d,x,y,z;
namespace Tree{
#define ls now<<1
#define rs now<<1|1
ll M1[N<<2],M2[N<<2],S[N<<2],F[N<<2];I void Up(int now){F[now]=max(max(F[ls],F[rs]),M1[ls]+M2[rs]);M1[now]=max(M1[rs],M1[ls]+S[rs]);M2[now]=max(M2[ls],M2[rs]+S[ls]);S[now]=S[ls]+S[rs];}
I void BD(int l=1,int r=n-d,int now=1){if(l==r) {M1[now]=M2[now]=S[now]=F[now]=-k;return;}int m=l+r>>1;BD(l,m,ls);BD(m+1,r,rs);Up(now);}
I void Ins(int x,int y,int l=1,int r=n-d,int now=1){if(l==r){M1[now]+=y;M2[now]+=y;S[now]+=y;F[now]+=y;return;}int m=l+r>>1;x<=m?Ins(x,y,l,m,ls):Ins(x,y,m+1,r,rs);Up(now);}
#undef ls
#undef rs
}
int main(){
freopen("1.in","r",stdin);
int i,j;scanf("%d%d%d%d",&n,&m,&k,&d);Tree::BD();while(m--)scanf("%d%d",&x,&y),Tree::Ins(x,y),puts(Tree::F[1]>1ll*d*k?"NIE":"TAK");
}