LeetCode 63. Unique Paths II Java
题目:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
题意:给出一个二维格子,其中值为1的点表示障碍点,要求求出从最左上角的点到最右下角的点有多少种走法。使用动态规划,对于其中一个点obstacleGrid[i][j](1<i<m,i<j<n),到该点的走法为d(obstacleGrid[i][j])=d(obstacleGrid[i-1][j])+d(obstacleGrid[i][j-1]),对于第一行和第一列,如果该点前面有障碍点,那么到到此点有0中方法,反之为1。遍历数组即可求解。
代码:
public class Solution { public int uniquePathsWithObstacles(int[][] obstacleGrid) { int row = obstacleGrid.length; if(row ==0) return 0; int col = obstacleGrid[0].length; int[][] res = new int[row][col]; for(int i=0;i<row;i++){ for(int j=0;j<col;j++){ if(obstacleGrid[i][j]==1) { res[i][j] = 0; continue; } if(i==0 || j==0){ if(j!=0){ res[i][j] = res[i][j-1]; }else if(i!=0){ res[i][j] = res[i-1][j]; }else{ res[i][j] = 1; } }else{ res[i][j] = res[i-1][j] + res[i][j-1]; } } } return res[row-1][col-1]; } }