LeetCode 62. Unique Paths Java
题目:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
题意:给出一个m*n的网格,有一个机器人,每一步只能向右或者向下走,求能从最左上角的格子到最右下角的格子有多少种走法。这道题是典型的动态规划,将网格看成一个二维数组A[m][n],那么我们要求的就是从A[0][0]到A[m-1][n-1]的路径,对于其中任意一点A[i][j](i<m,j<n)来说,到该点的方法有从A[i-1][j]向下走一步或者A[i][j-1]向右走一步,所以d(A[i][j])=d(A[i-1][j])+d(A[i][j-1])。对每个点遍历求解即可。这里需要注意对第一行和第一列上的所有点都只有一种走法。
代码:
public class Solution { public int uniquePaths(int m, int n) { if(m==0||n==0) return 0; if(m==1||n==1) //只有一行或者只有一列 只有一种走法 return 1; int[][] A=new int[m][n]; //用户记录起点到当前点走法 for(int i=0;i<m;i++){ for(int j=0;j<n;j++){ if(i==0||j==0) A[i][j]=1; else A[i][j]=A[i-1][j]+A[i][j-1]; } } return A[m-1][n-1]; } }