Count on a tree(树上路径第K小)
题目链接:https://www.spoj.com/problems/COT/en/
题意:求树上A,B两点路径上第K小的数
思路:主席树实际上是维护的一个前缀和,而前缀和不一定要出现在一个线性表上。
比如说我们从一棵树的根节点进行DFS,得到根节点到各节点的距离dist[x]——这是一个根-x路径上点与根节点距离的前缀和。
利用这个前缀和,我们可以解决一些树上任意路径的问题,比如在线询问[a,b]点对的距离——答案自然是dist[a]+dist[b]-2*dist[lca(a,b)]。
DFS遍历整棵树,然后在每个节点上建立一棵线段树,某一棵线段树的“前一版本”是位于该节点父亲节点fa的线段树。
利用与之前类似的方法插入点权(排序离散)。那么对于询问[a,b],答案就是root[a]+root[b]-root[lca(a,b)]-root[fa[lca(a,b)]]上的第k大。
#include<cstdio> #include<cstring> #include<queue> #include<cmath> #include<algorithm> #include<map> #include<vector> #include<string> #include<set> #define ll long long #define maxn 100007 using namespace std; const int MAXN=1e5+100; const int POW=18; int num[MAXN],node[MAXN]; struct point { int l; int r; int sum; }T[MAXN*20]; int root[MAXN]; vector<int> G[MAXN]; int d[MAXN]; int p[MAXN][POW]; int tot; int f[MAXN]; int n,m; void build(int l,int r,int& rt) { rt=++tot; T[rt].sum=0; if(l>=r)return; int m=(l+r)>>1; build(l,m,T[rt].l); build(m+1,r,T[rt].r); } void update(int last,int p,int l,int r,int &rt) { rt=++tot; T[rt].l=T[last].l; T[rt].r=T[last].r; T[rt].sum=T[last].sum+1; if(l>=r)return ; int m=(l+r)>>1; if(p<=m)update(T[last].l,p,l,m,T[rt].l); else update(T[last].r,p,m+1,r,T[rt].r); } int query(int left_rt,int right_rt,int lca_rt,int lca_frt,int l,int r,int k) { if(l>=r)return l; int m=(l+r)>>1; int cnt=T[T[right_rt].l].sum+T[T[left_rt].l].sum-T[T[lca_rt].l].sum-T[T[lca_frt].l].sum; if(k<=cnt) return query(T[left_rt].l,T[right_rt].l,T[lca_rt].l,T[lca_frt].l,l,m,k); else return query(T[left_rt].r,T[right_rt].r,T[lca_rt].r,T[lca_frt].r,m+1,r,k-cnt); } void dfs(int u,int fa,int cnt) { f[u]=fa; d[u]=d[fa]+1; p[u][0]=fa; for(int i=1;i<POW;i++) p[u][i]=p[p[u][i-1]][i-1]; update(root[fa],num[u],1,cnt,root[u]); for(int i=0;i<(int)G[u].size();i++) { int v=G[u][i]; if(v==fa)continue; dfs(v,u,cnt); } } int lca(int a,int b) { if(d[a]>d[b]) a^=b,b^=a,a^=b; if(d[a]<d[b]) { int del=d[b]-d[a]; for(int i=0;i<POW;i++) if(del&(1<<i))b=p[b][i]; } if(a!=b) { for(int i=POW-1;i>=0;i--) { if(p[a][i]!=p[b][i]) { a=p[a][i],b=p[b][i]; } } a=p[a][0],b=p[b][0]; } return a; } void init() { for(int i=0;i<=n;i++) { G[i].clear(); } memset(d,0,sizeof(d)); memset(p,0,sizeof(p)); memset(f,0,sizeof(f)); } int main() { while(~scanf("%d%d",&n,&m)) { init(); for(int i=1;i<=n;i++) { scanf("%d",&num[i]); node[i]=num[i]; } tot=0; sort(node+1,node+1+n); int cnt=unique(node+1,node+n+1)-node-1; for(int i=1;i<=n;i++) { num[i]=lower_bound(node+1,node+cnt+1,num[i])-node; } int a,b,c; for(int i=1;i<=n-1;i++) { scanf("%d%d",&a,&b); G[a].push_back(b); G[b].push_back(a); } build(1,cnt,root[0]); dfs(1,0,cnt ); while(m--) { scanf("%d%d%d",&a,&b,&c); int t=lca(a,b); int id=query(root[a],root[b],root[t],root[f[t]],1,cnt,c); printf("%d\n",node[id]); } } return 0; }