2-sat学习笔记(补档

重学2-sat

\(2-SAT\)是什么

  给定一个布尔方程,判断是否存在一组布尔变量能满足这个方程,方程的可行解被称为\(SAT\)。这个问题是\(NP-hard\)的。但是如果我们对这个问题加上一些限制,就可以在多项式时间内求解了。设一个布尔方程为:

    \((a_1\lor a_2\cdots\lor a_n) \land (b_1\lor b_2\cdots\lor b_n) \cdots\)

   如果一个布尔方程满足\(n<=2\),那么这就是一个\(2-SAT\)问题。

如何表示\(2-SAT\)

  因为每个布尔变量只有两种取值,所以我们可以将每个布尔变量拆成两个点后建图。设将\(x\)拆成\(x\)\(x'\)\(x\)表示变量\(x\)值为真,\(x'\)表示变量\(x\)值为假。

  如果从\(a\)的值,我们能推出\(b\)的值。那我们就在图中连一条有向边。比如一个布尔方程方程:\((a_1\lor a_2)\),我们发现如果\(a_1\)为假,那么\(a_2\)一定为真;同理如果\(a_2\)为假,那么\(a_1\)一定为真。于是我们在图中建两条有向边:\(a_1'->a_2\)\(a_2'->a_1\)。这就是最基本的\(2-SAT\)建图方法。

如何求解\(2-SAT\)

  对于一个变量\(x\),如果点\(x\)和点\(x'\)在同一个强连通分量中,那么显然这个布尔方程无解,因为此时\(x\)的值既要为真,又要为假。

  如果一个布尔方程存在一组解,对于点\(x\),如果\(x\)的拓扑序在\(x'\)之后,那么答案就是\(x\)取真。反之,\(x\)就取假。因为这样能够避免冲突,构造出一组可行解

求解细节

  先在图中求一遍强连通分量。可以用\(kosaraj\)或者\(tarjan\)。注意\(kosaraju\)中强连通分量编号的顺序就是该图强连通分量的拓扑序。而在\(tarjan\)则是强联通分量编号顺序则和该图强连通分量拓扑序相反。

代码

  代码中强联通分量用\(kosaraju\)求解

graph::kosaraju();
for (int i = 1; i <= n; ++i) {
  if (bel[i] == bel[i + n]) {
    puts("IMPOSSIBLE");
    return 0;
  }
}

puts("POSSIBLE");
for (int i = 1; i <= n; ++i) {
  printf("%d ", bel[i] > bel[i + n]);
}

例题

洛谷P4782

题意

求解\(2-SAT\)问题

题解

  对每种情况分别连边即可。设当前两个变量分别为\(A\)\(B\)

\(\begin{cases} A'->B, B'->A & A真B真\\ A'->B', B->A & A真B假 \\ A->B, B'->A' & A假B真 \\ A->B', B->A' & A假B假 \end{cases}\)

  然后按照上面讲的方法跑\(kosaraju\)求解即可。

// Author: 23forever
#include <bits/stdc++.h>
#define pb push_back
#define pii pair<int, int>
#define mp make_pair
#define fi first
#define se second
typedef long long LL;
const int MAXN = 2000000;
using namespace std;

inline int read() {
  int x = 0, w = 1;
  char c = ' ';
  
  while (!isdigit(c)) {
    c = getchar();
    if (c == '-') w = -1;
  }

  while (isdigit(c)) {
    x = (x << 1) + (x << 3) + (c ^ 48);
    c = getchar();
  }

  return x * w;
}

int n, m, bel[MAXN + 5];

namespace graph {

const int MAXM = 4000000;

struct Edge {
  int to, nxt;
  Edge() {}
  Edge(int _to, int _nxt) : to(_to), nxt(_nxt) {}
} edge[MAXM + 5], redge[MAXM + 5];

int tot, head[MAXN + 5], rtot, rhead[MAXN + 5];

inline void addEdge(int u, int v) {
  edge[tot] = Edge(v, head[u]), head[u] = tot++;
  redge[rtot] = Edge(u, rhead[v]), rhead[v] = rtot++;
}

inline void init() {
  tot = 0, memset(head, -1, sizeof(head));
  rtot = 0, memset(rhead, -1, sizeof(rhead));
}

vector < int > vec;
bool vis[MAXN + 5];

void dfs1(int u) {
  vis[u] = true;
  for (int i = head[u]; ~i; i = edge[i].nxt) {
    int v = edge[i].to;
    if (!vis[v]) dfs1(v);
  }

  vec.pb(u);
}

void dfs2(int u, int cnt) {
  vis[u] = true;
  bel[u] = cnt;

  for (int i = rhead[u]; ~i; i = redge[i].nxt) {
    int v = redge[i].to;
    if (!vis[v])  dfs2(v, cnt);
  }
}

void kosaraju() {
  for (int i = 1; i <= 2 * n; ++i) {
    if (!vis[i]) dfs1(i);
  }

  memset(vis, false, sizeof(vis));
  int cnt = 0;
  for (int i = vec.size() - 1; ~i; --i) {
    if (!vis[vec[i]]) dfs2(vec[i], ++cnt);
  }
}

}

void init() {
  graph::init();
  n = read(), m = read();

  for (int t = 1; t <= m; ++t) {
    int i = read(), a = read(), j = read(), b = read();
    if (a && b) {
      graph::addEdge(i + n, j);
      graph::addEdge(j + n, i);
    } else if (a && !b) {
      graph::addEdge(i + n, j + n);
      graph::addEdge(j, i);
    } else if (!a && b) {
      graph::addEdge(i, j);
      graph::addEdge(j + n, i + n);
    } else {
      graph::addEdge(i, j + n);
      graph::addEdge(j, i + n);
    }
  }
}

int main() {
#ifdef forever23
  freopen("test.in", "r", stdin);
  //freopen("test.out", "w", stdout);
#endif
  init();

  graph::kosaraju();
  for (int i = 1; i <= n; ++i) {
    if (bel[i] == bel[i + n]) {
      puts("IMPOSSIBLE");
      return 0;
    }
  }

  puts("POSSIBLE");
  for (int i = 1; i <= n; ++i) {
    printf("%d ", bel[i] > bel[i + n]);
  }

  return 0;
}

洛谷P4171

题意

每个变量有两种取值,所以问题就是求解一个\(2-SAT\)

题解

  建图和上一题一模一样:

\(\begin{cases} A'->B, B'->A & A:h,B:h\\ A'->B', B->A & A:h,B:m \\ A->B, B'->A' & A:m,B:h \\ A->B', B->A' & A:m,B:m \end{cases}\)

  只要看有没有\(x\)\(x'\)在同一个强联通分量即可。

代码

// Author: 23forever
#include <bits/stdc++.h>
typedef long long LL;
const int MAXN = 200;
using namespace std;

inline int read() {
  int x = 0, w = 1;
  char c = ' ';
  
  while (!isdigit(c)) {
    c = getchar();
    if (c == '-') w = -1;
  }

  while (isdigit(c)) {
    x = (x << 1) + (x << 3) + (c ^ 48);
    c = getchar();
  }

  return x * w;
}

int n, m, bel[MAXN + 5], scc_num;

namespace graph {

const int MAXM = 2000;

struct Edge {
  int to, nxt;
  Edge() {}
  Edge(int _to, int _nxt) : to(_to), nxt(_nxt) {}
} edge[MAXM + 5];

int tot, head[MAXN + 5];

inline void addEdge(int u, int v) {
  edge[tot] = Edge(v, head[u]), head[u] = tot++;
}

inline void init() {
  tot = 0, memset(head, -1, sizeof(head));
}

int dfn[MAXN + 5], low[MAXN + 5], idx;
bool in_sta[MAXN + 5];
stack < int > sta;

void dfs(int u) {
  dfn[u] = low[u] = ++idx;
  sta.push(u);
  in_sta[u] = true;

  for (int i = head[u]; ~i; i = edge[i].nxt) {
    int v = edge[i].to;
    if (!dfn[v]) {
      dfs(v);
      low[u] = min(low[u], low[v]);
    } else if (in_sta[v]) {
      low[u] = min(low[u], dfn[v]);
    }
  }

  if (dfn[u] == low[u]) {
    ++scc_num;
    int k;
    do {
      k = sta.top(), bel[k] = scc_num;
      in_sta[k] = false, sta.pop();
    } while (k != u);
  }
} 

void tarjan() {
  memset(dfn, 0, sizeof(dfn));
  for (int i = 1; i <= 2 * n; ++i) {
    if (!dfn[i]) dfs(i);
  }
}

}

void init() {
  graph::init();
  n = read(), m = read();
  
  for (int i = 1; i <= m; ++i) {
    char c1 = getchar();
    while (!isalpha(c1)) c1 = getchar();
    int x = read();

    char c2 = getchar();
    while (!isalpha(c2)) c2 = getchar();
    int y = read();

    if (c1 == 'h' && c2 == 'h') {
      graph::addEdge(y + n, x);
      graph::addEdge(x + n, y);
    } else if (c1 == 'h' && c2 == 'm') {
      graph::addEdge(x + n, y + n);
      graph::addEdge(y, x);
    } else if (c1 == 'm' && c2 == 'h') {
      graph::addEdge(x, y);
      graph::addEdge(y + n, x + n);
    } else {
      graph::addEdge(x, y + n);
      graph::addEdge(y, x + n);
    }
  }
}

int main() {
#ifdef forever23
  freopen("test.in", "r", stdin);
  //freopen("test.out", "w", stdout);
#endif
  int t = read();

  while (t--) {
    init();

    graph::tarjan();

    bool f = false;
    for (int i = 1; i <= n; ++i) {
      if (bel[i] == bel[i + n]) {
        puts("BAD");
        f = true;
        break;
      }
    }

    if (!f) puts("GOOD");
  }

  return 0;
}

总结

  求解\(2-SAT\)问题其实是通过巧妙的建图方法来解决。这种能推出就拉边的思想十分常见。在并查集相关题目中也能见到。值得积累。

posted @ 2020-08-03 17:07  23forever  阅读(125)  评论(0编辑  收藏  举报