Tiny_Lu
不忘初心

Day 30 GIL解释器锁/多线程的作用/死锁/递归锁/信号量/线程队列

GIL全局解释器锁

GIL全局解释器锁:
基于Cpython来研究全局解释器锁.

1.GIL本质上是一个互斥锁.
2.GIL的为了阻止同一个进程内多个线程同时执行(并行)

- 单个进程下的多个线程无法实现并行,但能实现并发

3.这把锁主要是因为CPython的内存管理不是 "线程安全" 的.
- 内存管理
- 垃圾回收机制
GIL的存在就是为了保证线程安全的.

注意: 多个线程过来执行,一旦遇到IO操作,就会立马释放GIL解释器锁,交给下一个先进来的线程.

验证多线程的作用

计算密集型

单核:

​ 开启进程:

from multiprocessing import Process
import os
import time


def work1():
    num = 0
    for i in range(10000000):
        num += 1


if __name__ == '__main__':
    print(os.cpu_count())  # 6
    start_time = time.time()
    p_l = []
    for i in range(6):
        p = Process(target=work1)
        p.start()
        p_l.append(p)
        p.join()

    end_time = time.time()
    print('cost time:', end_time - start_time)

​ 开启线程:

from threading import Thread
import os
import time


def work1():
    num = 0
    for i in range(10000000):
        num += 1


if __name__ == '__main__':
    print(os.cpu_count())  # 6
    start_time = time.time()
    p_l = []
    for i in range(6):
        p = Thread(target=work1)
        p.start()
        p_l.append(p)
        p.join()

    end_time = time.time()
    print('cost time:', end_time - start_time)

多核:

​ 开启进程:

from multiprocessing import Process
import os
import time


def work1():
    num = 0
    for i in range(10000000):
        num += 1


if __name__ == '__main__':
    print(os.cpu_count())  # 6
    start_time = time.time()
    p_l = []
    for i in range(6):
        p = Process(target=work1)
        p.start()
        p_l.append(p)

    for p in p_l:
        p.join()

    end_time = time.time()
    print('cost time:', end_time - start_time)

​ 开启线程:

from threading import Thread
import os
import time


def work1():
    num = 0
    for i in range(10000000):
        num += 1


if __name__ == '__main__':
    print(os.cpu_count())  # 6
    start_time = time.time()
    p_l = []
    for i in range(6):
        p = Thread(target=work1)
        p.start()
        p_l.append(p)
      
    for p in p_l:
        p.join()

    end_time = time.time()
    print('cost time:', end_time - start_time)

IO密集型

单核:

​ 开启进程:

from multiprocessing import Process
import os
import time


def work2():
    time.sleep(1)


if __name__ == '__main__':
    print(os.cpu_count())  # 6
    start_time = time.time()
    p_l = []
    for i in range(40):
        p = Process(target=work2)
        p.start()
        p_l.append(p)
        p.join()

    end_time = time.time()
    print('cost time:', end_time - start_time)

​ 开启线程:

from threading import Thread
import os
import time


def work2():
    time.sleep(1)


if __name__ == '__main__':
    print(os.cpu_count())  # 6
    start_time = time.time()
    p_l = []
    for i in range(40):
        p = Thread(target=work2)
        p.start()
        p_l.append(p)
        p.join()

    end_time = time.time()
    print('cost time:', end_time - start_time)

多核:

​ 开启进程:

from multiprocessing import Process
import os
import time


def work2():
    time.sleep(1)


if __name__ == '__main__':
    print(os.cpu_count())  # 6
    start_time = time.time()
    p_l = []
    for i in range(40):
        p = Process(target=work2)
        p.start()
        p_l.append(p)
        
    for p in p_l:
        p.join()

    end_time = time.time()
    print('cost time:', end_time - start_time)

​ 开启线程:

from threading import Thread
import os
import time


def work2():
    time.sleep(1)


if __name__ == '__main__':
    print(os.cpu_count())  # 6
    start_time = time.time()
    p_l = []
    for i in range(40):
        p = Thread(target=work2)
        p.start()
        p_l.append(p)
        
    for p in p_l:
        p.join()

    end_time = time.time()
    print('cost time:', end_time - start_time)

死锁现象

'''
死锁现象(了解):

'''
from threading import Lock, Thread, current_thread
import time

mutex_a = Lock()
mutex_b = Lock()
#
# print(id(mutex_a))
# print(id(mutex_b))


class MyThread(Thread):

    # 线程执行任务
    def run(self):
        self.func1()
        self.func2()

    def func1(self):
        mutex_a.acquire()
        # print(f'用户{current_thread().name}抢到锁a')
        print(f'用户{self.name}抢到锁a')
        mutex_b.acquire()
        print(f'用户{self.name}抢到锁b')
        mutex_b.release()
        print(f'用户{self.name}释放锁b')
        mutex_a.release()
        print(f'用户{self.name}释放锁a')

    def func2(self):
        mutex_b.acquire()
        print(f'用户{self.name}抢到锁b')
        # IO操作
        time.sleep(1)

        mutex_a.acquire()
        print(f'用户{self.name}抢到锁a')
        mutex_a.release()
        print(f'用户{self.name}释放锁a')
        mutex_b.release()
        print(f'用户{self.name}释放锁b')


for line in range(10):
    t = MyThread()
    t.start()

递归锁

'''
递归锁(了解):
    用于解决死锁问题.

RLock: 比喻成万能钥匙,可以提供给多个人去使用.
    但是第一个使用的时候,会对该锁做一个引用计数.
    只有引用计数为0, 才能真正释放让另一个人去使用
'''

from threading import RLock, Thread, RLock
import time

mutex_a = mutex_b = RLock()


class MyThread(Thread):

    # 线程执行任务
    def run(self):
        self.func1()
        self.func2()

    def func1(self):
        mutex_a.acquire()
        # print(f'用户{current_thread().name}抢到锁a')
        print(f'用户{self.name}抢到锁a')
        mutex_b.acquire()
        print(f'用户{self.name}抢到锁b')
        mutex_b.release()
        print(f'用户{self.name}释放锁b')
        mutex_a.release()
        print(f'用户{self.name}释放锁a')

    def func2(self):
        mutex_b.acquire()
        print(f'用户{self.name}抢到锁b')
        # IO操作
        time.sleep(1)
        mutex_a.acquire()
        print(f'用户{self.name}抢到锁a')
        mutex_a.release()
        print(f'用户{self.name}释放锁a')
        mutex_b.release()
        print(f'用户{self.name}释放锁b')


for line in range(10):
    t = MyThread()
    t.start()

信号量

'''
信号量(了解):

    互斥锁: 比喻成一个家用马桶.
        同一时间只能让一个人去使用

    信号量: 比喻成公厕多个马桶.
        同一时间可以让多个人去使用
'''
from threading import Semaphore, Lock
from threading import current_thread
from threading import Thread
import time

sm = Semaphore(5)  # 5个马桶
mutex = Lock()  # 5个马桶


def task():
    # mutex.acquire()
    sm.acquire()
    print(f'{current_thread().name}执行任务')
    time.sleep(1)
    sm.release()
    # mutex.release()


for line in range(20):
    t = Thread(target=task)
    t.start()

线程队列

'''
线程Q: 线程队列

    - FIFO队列: 先进先出
    - LIFO队列: 后进先出
    - 优先级队列: 根据参数分级
'''
import queue

# 普通的线程队列: 先进先出
# q = queue.Queue()
# q.put(1)
# q.put(2)
# q.put(3)
# print(q.get())  # 1


# LIFO队列: 后进先出
# q = queue.LifoQueue()
# q.put(1)
# q.put(2)
# q.put(3)
# print(q.get())  # 3


# 优先级队列
q = queue.PriorityQueue()  # 超级了解
# 若参数中传的是元组,会以元组中第一个数字参数为准
q.put(('a优', '先', '娃娃头', 4))  # a==97
q.put(('a先', '优', '娃娃头', 3))  # a==98
q.put(('a级', '级', '娃娃头', 2))  # a==99
'''
1.首先根据第一个参数判断ascii表的数值大小
2.判断第个参数中的汉字顺序.
3.再判断第二参数中数字--> 字符串数字 ---> 中文
4.以此类推
'''
print(q.get())
posted @ 2019-10-25 19:49  二二二二白、  阅读(83)  评论(0编辑  收藏  举报