【题解】魔术棋子

题目描述

在一个M×N的魔术棋盘中,每个格子中均有一个整数,当棋子走进这个格子中,则此棋子上的数会被乘以此格子中的数。一个棋子从左上角走到右下角,只能向右或向下行动,请问此棋子走到右下角后,模(mod)K可以为几?
如以下2×3棋盘:
3 4 4
5 6 6
棋子初始数为1,开始从左上角进入棋盘,走到右下角,上图中,最后棋子上的数可能为288,432或540。所以当K=5时,可求得最后的结果为:0,2,3。

输入输出格式

输入格式:

第一行为三个数,分别为M,N,K(1≤M,N,K≤100);
以下M行,每行N个数,分别为此方阵中的数。

输出格式:

第一行为可能的结果个数;
第二行为所有可能的结果(按升序输出)。

输入输出样例

输入样例:

2 3 5
3 4 4
5 6 6

输出样例:

3
0 2 3

这道题随便搜索一下,每搜索一次就取模一次嘛

#include<iostream>
using namespace std;
int line,list,k,s[105][105];
int p,ans[25],check[105];
void dfs(int x,int y,int magic)
{
	if(x<1||y<1||x>line||y>list) return;
	magic*=s[x][y];
	magic%=k;
	if(x==line&&y==list)
	{
		if(check[magic]==1) return;
		check[magic]=1;
		ans[++p]=magic;
		return;
	}
	dfs(x+1,y,magic);
	dfs(x,y+1,magic);
}
int main()
{
	cin>>line>>list>>k;
	for(register int i=1;i<=line;++i)
	{
		for(register int j=1;j<=list;++j)
		{
			cin>>s[i][j];
		}
	}
	dfs(1,1,1);
	cout<<p<<endl;
	for(register int i=1;i<p;++i) cout<<ans[i]<<" ";
	cout<<ans[p];
}

……然后就只有20分,8个点全部TLE
想一想就计划吧
如果来到这个点时得到的结果以前出现过,那么这条路就被我找过了,就直接返回了。
AC代码:

#include<iostream>
#include<algorithm>
using namespace std;
int line,list,k,s[105][105];
int p,ans[105],check[105];
int rmb[105][105][105];
void dfs(int x,int y,int magic)
{
	if(x<1||y<1||x>line||y>list) return;
	magic*=s[x][y];
	magic%=k;
	if(rmb[x][y][magic]==1) return;
	if(x==line&&y==list)
	{
		if(check[magic]==1) return;
		check[magic]=1;
		ans[++p]=magic;
		return;
	}
	dfs(x+1,y,magic);
	dfs(x,y+1,magic);
	rmb[x][y][magic]=1;
}
int main()
{
	cin>>line>>list>>k;
	for(register int i=1;i<=line;++i)
	{
		for(register int j=1;j<=list;++j)
		{
			cin>>s[i][j];
		}
	}
	dfs(1,1,1);
	sort(ans+1,ans+1+p);
	cout<<p<<endl;
	for(register int i=1;i<p;++i) cout<<ans[i]<<" ";
	cout<<ans[p];
}
posted @ 2019-07-11 19:15  X_OR  阅读(206)  评论(0编辑  收藏  举报