pytorch中的损失函数
深度学习的优化方法直接作用的对象是损失函数。在最优化、统计学、机器学习和深度学习等领域中经常能用到损失函数。损失函数就是用来表示预测与实际数据之间的差距程度。一个最优化问题的目标是将损失函数最小化,针对分类问题,直观的表现就是分类正确的样本越多越好。在回归问题中,直观的表现就是预测值与实际值误差越小越好。
PyTorch中的nn模块提供了多种可直接使用的深度学习损失函数,如交叉熵、均方误差等,针对不同的问题,可以直接调用现有的损失函数。常用损失函数如下:
类 | 算法名称 | 适用问题类型 |
torch.nn.L1Loss() | 平均绝对值误差损失 | 回归 |
torch.nn.MSELoss() | 均方误差损失 | 回归 |
torch.nn.CrossEntropyLoss() | 交叉熵损失 | 多分类 |
torch.nn.NLLLoss() | 负对数似然函数损失 | 多分类 |
torch.nn.NLLLoss2d() | 图片负对数似然函数损失 | 图像分割 |
torch.nn.KLDivLoss() | KL散度损失 | 回归 |
torch.nn.BCELoss() | 二分类交叉熵损失 | 二分类 |
torch.nn.MarginRanKingLoss() | 评价相似度的损失 | |
torch.nn.MultiLabelMarginLoss() | 多标签分类的损失 | 多标签分类 |
torch.nn.SmoothL1Loss() | 平滑的L1损失 | 回归 |
torch.nn.SoftMarginLoss() | 多标签二分类问题的损失 | 多标签二分类 |