CF1738EBalance Addicts
CF1738EBalance Addicts
题目大意
有\(n\)个数的数列,把它分成若干个子集,保证所有子集的和能够组成一个回文数列,求\(mod\ 998244353\)后的方案数。
做法
思路
先分别从头和尾找到一段序列的和相同,记为\(l1\ r2\)然后从\(l1\ r2\)开始寻找一段最长的和相等的序列记为\(r1\ l2\)。
此时答案为
\[ans *= \sum_{i = 0}^{min(r1 - l1 + 1 , r2 - l2 + 1)}C_{r1 - l1 + 1}^i * C_{r2 - l2 + 1}^i
\]
注意
1、如果此时\(l1\ r2\)之间的数都为\(0\)。
显然:\(l1\ r2\)之间的数都可以随便选,那么将\(ans *= 2^{r2 - l1 + 1}\)即可退出
2、预处理\(sum1\ sum2\ tpow\)表示前缀和、后缀和、2的\(n\)次方
3、记得\(mod\ 998244353\)
code
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
const long long mod = 998244353;
int n;
long long ans , ans1 , sum1[N + 5] , sum2[N + 5] , fac[N + 5] , inv[N + 5] , tpow[N + 5] , a[N + 5];
long long pw(long long x , long long y) {
if(!y)
return 1;
long long z = pw (x , y / 2);
z = z * z % mod;
if(y & 1)
z = z * x % mod;
return z;
}
void pre() {
fac[1] = fac[0] = 1;
for(int i = 2 ; i <= N ; i++) {
fac[i] = fac[i - 1] * i % mod ;
}
inv[N] = pw (fac[N] , mod - 2);
for(int i = N - 1 ; i >= 0 ; i--) {
inv[i] = inv[i + 1] * (i + 1) % mod;
}
tpow[0] = 1;
for (int i = 1 ; i <= N ; i++)
tpow[i] = tpow[i - 1] * 2 % mod;
}
long long C(int x , int y) {
if(x<0||y<0) return 0;
if(x < y)
return 0;
return fac[x] * inv[y] % mod * inv[x - y] % mod;
}
int main () {
pre ();
int T;
scanf ("%d" , &T);
while (T--) {
ans = 1;
scanf ("%d" , &n);
for (int i = 1 ; i <= n ; i++) {
scanf ("%d" , &a[i]);
}
for (int i = 1 ; i <= n ; i++) {
sum1[i] = sum1[i - 1] + a[i];
}
for (int i = n - 1; i >= 1 ; i--) {
sum2[i] = sum2[i + 1] + a[i + 1];
}
for (int l1 = 1 , r2 = n - 1 , l2 , r1; l1 <= r2 ; l1 = r1 + 1 , r2 = l2 - 1) {
while (l1 <= r2 && sum1[l1] != sum2[r2]) {
if(sum1[l1] < sum2[r2])
l1 ++;
else
r2 --;
}
if (l1 > r2)
break;
if (sum1[l1] == sum1[r2]) {
ans = tpow[r2 - l1 + 1] * ans % mod;
break;
}
r1 = l1 , l2 = r2;
while (sum1[r1 + 1] == sum1[l1])
r1 ++;
while (sum2[l2 - 1] == sum2[r2])
l2 --;
ans1 = 0;
for (int i = 0 ; i <= min(r1 - l1 + 1 , r2 - l2 + 1) ; i++) {
ans1 = (ans1 + (C (r1 - l1 + 1 , i) * C (r2 - l2 + 1 , i) %mod) ) %mod;
}
ans = ans * ans1 % mod;
}
printf("%lld\n" , ans);
for (int i = 1 ; i <= n ; i++)
sum1[i] = sum2[i] = 0;
}
return 0;
}
如果人生会有很长,愿有你的荣耀永不散场