5-树7 堆中的路径 (25分)
5-树7 堆中的路径 (25分)
将一系列给定数字插入一个初始为空的小顶堆H[]
。随后对任意给定的下标i
,打印从H[i]
到根结点的路径。
输入格式:
每组测试第1行包含2个正整数N和M(≤),分别是插入元素的个数、以及需要打印的路径条数。下一行给出区间[-10000, 10000]内的N个要被插入一个初始为空的小顶堆的整数。最后一行给出M个下标。
输出格式:
对输入中给出的每个下标i
,在一行中输出从H[i]
到根结点的路径上的数据。数字间以1个空格分隔,行末不得有多余空格。
输入样例:
5 3 46 23 26 24 10 5 4 3
输出样例:
24 23 10 46 23 10 26 10
提测代码如下:
#include <stdio.h> #include <stdlib.h> #define MAXN 1001 #define MINH -10001 int H[MAXN], size; void Create(){ size = 0; H[0] = MINH; } void Insert(int elem) { int i; for(i=++size; H[i/2] > elem; i/=2){ H[i] = H[i/2]; } H[i] = elem; } int main() { int N, QueryN, elem; scanf("%d %d", &N, &QueryN); Create(); for(int i = 0; i < N; i++){ scanf("%d", &elem); Insert(elem); } int j; for(int i=0; i < QueryN; i++){ scanf("%d", &j); printf("%d", H[j]); while(j>1){ j/=2; printf(" %d", H[j]); } printf("\n"); } return 0; }
提测结果:
2021-08-05:
#include <stdio.h> #include <stdlib.h> const int MIN = -10001; typedef int ElemType; typedef struct HeapStruct *MinHeap; struct HeapStruct{ ElemType* data; int size;//大小 int capacity;//容量 }; MinHeap CreateHeap(int size){ MinHeap H = (MinHeap)malloc(sizeof(struct HeapStruct)); H->data = (ElemType*)malloc((size+1)*sizeof(ElemType)); H->size = 0; H->capacity = size; H->data[0] = MIN; return H; } int IsFull(MinHeap H){ if(H && H->size == H->capacity){ return 1; } return 0; } void Insert(MinHeap H, ElemType item){ int i; if(IsFull(H)){ return; } i = ++H->size; for( ; H->data[i/2] > item; i/=2){ H->data[i] = H->data[i/2]; } H->data[i] = item; } void PrintPath(MinHeap H, int index){ int first = 1; for(int j = index; j > 0; j/=2){ if(first){ first = 0; printf("%d", H->data[j]); } else{ printf(" %d", H->data[j]); } } if(first == 0) { printf("\n"); } } void Print(MinHeap H, int M){ for(int i = 0; i < M; ++i){ int index; scanf("%d", &index); PrintPath(H, index); } } int main(){ int N,M; scanf("%d %d",&N,&M); MinHeap H = CreateHeap(N); for(int i = 0; i < N; ++i){ int item; scanf("%d", &item); Insert(H, item); } Print(H, M); return 0; }