【BZOJ1565】【NOI2009】植物大战僵尸
好久没写博客了
题目
思路&做法
没什么好说的
应该很容易看出是 最大闭合子图 吧?
不过要注意一下的是,这题 可能有植物是不可能被击溃的 , 所以要先跑一遍 拓扑排序 把这些点排除掉
代码
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
const int N = 810, M = 500010;
const int INF = 0x7F7F7F7F;
int n, m;
int val[40][40];
vector< pair<int, int> > vec[40][40];
bool vis[N]; //vis为0的点就是不可能击溃的点
struct edge
{ int from, to, flow, cap;
edge() { }
edge(int _1, int _2, int _3, int _4) : from(_1), to(_2), flow(_3), cap(_4) { }
};
struct Dinic
{ edge edges[M];
int head[N], nxt[M], tot;
int L, R;
inline void init()
{ memset(head, -1, sizeof(head));
tot = 0;
}
void add_edge(int x, int y, int z)
{ edges[tot] = edge(x, y, 0, z);
nxt[tot] = head[x];
head[x] = tot++;
edges[tot] = edge(y, x, 0, 0);
nxt[tot] = head[y];
head[y] = tot++;
}
int s, t;
int d[N];
bool bfs()
{ memset(d, -1, sizeof(d));
queue<int> q;
q.push(s);
d[s] = 0;
while (!q.empty())
{ int x = q.front(); q.pop();
for (int i = head[x]; ~i; i = nxt[i])
{ edge & e = edges[i];
if (vis[e.to] && e.cap > e.flow && d[e.to] == -1)
{ d[e.to] = d[x] + 1;
q.push(e.to);
}
}
}
return d[t] != -1;
}
int cur[N];
int dfs(int x, int a)
{ if (x == t || a == 0) return a;
int flow = 0, f;
for (int & i = cur[x]; ~i; i = nxt[i])
{ edge & e = edges[i];
if (vis[e.to] && d[e.to] == d[x] + 1 && (f = dfs(e.to, min(a, e.cap-e.flow))) > 0)
{ e.flow += f;
edges[i^1].flow -= f;
a -= f;
flow += f;
if (!a) break;
}
}
return flow;
}
int maxflow(int _s, int _t)
{ s = _s, t = _t;
int flow = 0;
while (bfs())
{ for (int i = L; i <= R; i++)
cur[i] = head[i];
flow += dfs(s, INF);
}
return flow;
}
} dinic;
int S, T;
int in[N];
int num[N];
inline int id(int x, int y) { return (x-1)*m + y; }
void topo()
{ queue<int> q;
for (int i = 1; i <= n*m; i++)
if (!in[i]) q.push(i);
while (!q.empty())
{ int x = q.front(); q.pop();
vis[x] = 1;
for (int i = dinic.head[x]; ~i; i = dinic.nxt[i])
{ edge & e = dinic.edges[i];
if (e.to == S || e.to == T || in[e.to] == 0 || e.cap > e.flow)
continue;
if ((--in[e.to]) == 0)
q.push(e.to);
}
}
}
void build()
{ S = n * m + 1, T = n * m + 2;
dinic.init();
dinic.L = 0, dinic.R = n * m + 2;
for (int i = 1; i <= n; i++)
{ for (int j = 1; j <= m; j++)
{ if (val[i][j] > 0)
dinic.add_edge(S, id(i, j), val[i][j]);
if (val[i][j] < 0)
dinic.add_edge(id(i, j), T, -val[i][j]);
for (int k = 0; k < vec[i][j].size(); k++)
{ dinic.add_edge(id(vec[i][j][k].first, vec[i][j][k].second), id(i, j), INF);
in[id(vec[i][j][k].first, vec[i][j][k].second)]++;
}
if (j > 1)
dinic.add_edge(id(i, j-1), id(i, j), INF),
in[id(i, j-1)]++;
}
}
}
int main()
{ scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
{ int l;
scanf("%d %d", &val[i][j], &l);
num[id(i, j)] = val[i][j];
for (int k = 1; k <= l; k++)
{ int x, y;
scanf("%d %d", &x, &y);
x++, y++;
vec[i][j].push_back(make_pair(x, y));
}
}
build();
topo();
int ans = 0;
for (int i = 1; i <= n*m; i++)
if (vis[i] && num[i] > 0)
ans += num[i];
vis[S] = vis[T] = 1;
ans -= dinic.maxflow(S, T);
printf("%d\n", ans);
return 0;
}