SNOI2017 礼物
题解
设前\(n\)个人的礼物个数和为\(F_n\), 那么显然$$F_n = 2 \times F_{n-1} + i^k$$
考虑矩阵快速幂
棘手的问题是:\(i^k\)不是可以直接用矩阵乘法可以递推的东西
由二项式定理可得:$$a^k = \sum_{i = 1}{k}(a-1)i {k \choose i}$$
那么我们可以给\(\left[ (i-1)^0\; (i-1)^1\;(i-1)^2\; \cdots\; (i-1)^k\;\right]\) 乘上一个杨辉三角矩阵, 就能得到\(\left[i^0\;i^1\;i^2\;\cdots\;i^k\right]\)
然后我们就能用矩阵快速幂算\(F\), 显然\(Ans = F_{n-1} + i^k\)
于是就做完了
注意:这题两个n相乘可能会long long溢出, 因此算\(n^k\)前要先给\(n\)取模
代码
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL mod = 1e9 + 7;
LL power(LL a, LL n, LL mod)
{
LL Ans = 1;
while (n)
{
if (n & 1) Ans = Ans * a % mod;
a = a * a % mod;
n >>= 1;
}
return Ans;
}
LL n; int K;
struct Matrix
{
LL a[12][12];
Matrix() { memset(a, 0, sizeof(a)); }
LL* operator [] (int x) { return a[x]; }
friend Matrix operator * (Matrix a, Matrix b)
{
Matrix Ans;
for (int i = 0; i <= K + 1; i++)
for (int k = 0; k <= K + 1; k++)
if (a[i][k])
for (int j = 0; j <= K + 1; j++)
(Ans[i][j] += a[i][k] * b[k][j] % mod) %= mod;
return Ans;
}
};
Matrix power(Matrix a, LL n)
{
Matrix Ans;
for (int i = 0; i <= K + 1; i++) Ans[i][i] = 1;
while (n)
{
if (n & 1) Ans = Ans * a;
a = a * a;
n >>= 1;
}
return Ans;
}
Matrix Ans, a;
int main()
{
Matrix A, Ans;
scanf("%lld %d", &n, &K);
if (n <= 2)
{
LL Ans = 1;
for (int i = 2; i < n; i++)
Ans = (2 * Ans + power(i, K, mod)) % mod;
Ans = (Ans + power(n, K, mod)) % mod;
printf("%lld\n", Ans);
return 0;
}
A[0][0] = 1;
for (int i = 1; i <= K; i++)
{
A[i][0] = 1; A[i][i] = 1;
for (int j = 1; j < i; j++)
A[i][j] = (A[i-1][j-1] + A[i-1][j]) % mod;
}
A[K+1][K+1] = 2;
for (int i = 0; i <= K; i++)
A[K+1][i] = A[K][i];
for (int i = 0; i <= K; i++)
Ans[i][1] = 1;
Ans[K+1][1] = 1;
Ans = power(A, n - 2) * Ans;
printf("%lld\n", (Ans[K+1][1] + power(n%mod, K, mod)) % mod);
return 0;
}