【HDU4372】Count the Buildings 【斯特林数】

题目链接
题意:n座高楼,高度均不同且为1~n中的数,从前向后看能看到f个,从后向前看能看到b个,问有多少种可能的排列数。
考虑高度为n的那栋楼的位置,n的前方分为f-1组,n的后方分为b-1组,每一组只能看到最高的那一栋楼。我们可以发现只要每一组的每栋楼的高度确定了,组的排列也会确定下来,而且每一组都是一个环。于是我们要计算的的就是把n-1栋楼分成f+b-2个环的方案总数,再乘上一个高度为n的楼的前方可以放的组的不同选法的方案总数。这不就是个第一类斯特林数再乘上一个组合数吗?公式:
ans=S(n1,f+b2)Cf+b2f1
于是我们只需要与处理好第一类斯特林数和组合数,就可以O(1)求答案了。注意判一判无解的情况。
代码

#include<cstdio>
typedef long long ll;
const int N=2005;
const ll mod=1000000007;
int t;
ll n,f,b,s[N][N],c[N][N];
int main(){
    for(int i=0;i<=2000;i++){
        s[i][i]=1;
        c[i][0]=c[i][i]=1;
    }
    for(int i=1;i<=2000;i++){
        for(int j=1;j<=i;j++){
            s[i][j]=(s[i-1][j-1]+(i-1)*s[i-1][j])%mod;
            c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
        }
    }
    scanf("%d",&t);
    while(t--){
        scanf("%lld%lld%lld",&n,&f,&b);
        if(f+b-2>=n){
            puts("0");
            continue;
        }
        printf("%lld\n",s[n-1][f+b-2]*c[f+b-2][f-1]%mod);
    }
    return 0;
}
posted @ 2018-05-06 21:45  一剑霜寒十四洲  阅读(144)  评论(0编辑  收藏  举报