2017-2018-1 20155222 《信息安全系统设计基础》第5周学习总结
2017-2018-1 20155222 《信息安全系统设计基础》第5周学习总结
教材学习内容总结
学习目标
理解逆向的概念
掌握X86汇编基础,能够阅读(反)汇编代码
了解ISA(指令集体系结构)
理解函数调用栈帧的概念,并能用GDB进行调试
-
1.通用数据传送指令
MOV 传送字或字节.
MOVSX 先符号扩展,再传送.
MOVZX 先零扩展,再传送.
PUSH 把字压入堆栈.
POP 把字弹出堆栈.
PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈.
POPA 把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈.
PUSHAD 把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈.
POPAD 把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次弹出堆栈.
BSWAP 交换32位寄存器里字节的顺序
XCHG 交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数)
CMPXCHG 比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX )
XADD 先交换再累加.( 结果在第一个操作数里 )
XLAT 字节查表转换.
── BX 指向一张 256 字节的表的起点, AL 为表的索引值 (0-255,即
0-FFH); 返回 AL 为查表结果. ( [BX+AL]->AL ) -
2.输入输出端口传送指令
IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} )
OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器 )
输入输出端口由立即方式指定时, 其范围是 0-255; 由寄存器 DX 指定时,
其范围是 0-65535. -
3.目的地址传送指令.
LEA 装入有效地址.
例: LEA DX,string ;把偏移地址存到DX.
LDS 传送目标指针,把指针内容装入DS.
例: LDS SI,string ;把段地址:偏移地址存到DS:SI.
LES 传送目标指针,把指针内容装入ES.
例: LES DI,string ;把段地址:偏移地址存到ES:DI.
LFS 传送目标指针,把指针内容装入FS.
例: LFS DI,string ;把段地址:偏移地址存到FS:DI.
LGS 传送目标指针,把指针内容装入GS.
例: LGS DI,string ;把段地址:偏移地址存到GS:DI.
LSS 传送目标指针,把指针内容装入SS.
例: LSS DI,string ;把段地址:偏移地址存到SS:DI. -
4.标志传送指令.
LAHF标志寄存器传送,把标志装入AH.
SAHF 标志寄存器传送,把AH内容装入标志寄存器.
PUSHF 标志入栈.
POPF 标志出栈.
PUSHD 32位标志入栈.
POPD 32位标志出栈.
ADD 加法.
ADC 带进位加法.
INC 加 1.
AAA 加法的ASCII码调整.
DAA 加法的十进制调整.
SUB 减法.
SBB 带借位减法.
DEC 减 1.
NEG 取补
CMP 比较.(两操作数作减法,仅修改标志位,不回送结果).
AAS 减法的ASCII码调整.
DAS 减法的十进制调整.
MUL 无符号乘法.
IMUL 整数乘法.
以上两条,结果回送AH和AL(字节运算),或DX和AX(字运算),
AAM 乘法的ASCII码调整.
DIV 无符号除法.
IDIV 整数除法.
以上两条,结果回送:
商回送AL,余数回送AH, (字节运算);
或 商回送AX,余数回送DX, (字运算).
AAD 除法的ASCII码调整.
CBW 字节转换为字. (把AL中字节的符号扩展到AH中去)
CWD 字转换为双字. (把AX中的字的符号扩展到DX中去)
CWDE 字转换为双字. (把AX中的字符号扩展到EAX中去)
CDQ 双字扩展. (把EAX中的字的符号扩展到EDX中去)
AND 与运算.
or 或运算.
XOR 异或运算.
NOT 取反.
TEST 测试.(两操作数作与运算,仅修改标志位,不回送结果).
SHL 逻辑左移.
SAL 算术左移.(=SHL)
SHR 逻辑右移.( 每位右移, 低位进 CF, 高位补 0)
SAR 算术右移.(每位右移, 低位进 CF, 高位不变)
ROL 循环左移.
ROR 循环右移.
RCL 通过进位的循环左移.
RCR 通过进位的循环右移.
以上八种移位指令,其移位次数可达255次.
移位一次时, 可直接用操作码. 如 SHL AX,1.
移位>1次时, 则由寄存器CL给出移位次数.
如 MOV CL,04
SHL AX,CL -
逆向
逆向工程(又称逆向技术),是一种产品设计技术再现过程,即对一项目标产品进行逆向分析及研究,从而演绎并得出该产品的处理流程、组织结构、功能特性及技术规格等设计要素,以制作出功能相近,但又不完全一样的产品。逆向工程源于商业及军事领域中的硬件分析。其主要目的是在不能轻易获得必要的生产信息的情况下,直接从成品分析,推导出产品的设计原理。 -
函数栈帧
在子函数调用时,执行的操作有:父函数将调用参数从后向前压栈 -> 将返回地址压栈保存 -> 跳转到子函数起始地址执行 -> 子函数将父函数栈帧起始地址(%rpb) 压栈 -> 将 %rbp 的值设置为当前 %rsp 的值,即将 %rbp 指向子函数栈帧的起始地址。
上述过程中,保存返回地址和跳转到子函数处执行由 call 一条指令完成,在call 指令执行完成时,已经进入了子程序中,因而将上一栈帧%rbp 压栈的操作,需要由子程序来完成。函数调用时在汇编层面的指令序列如下:
... # 参数压栈
call FUNC # 将返回地址压栈,并跳转到子函数 FUNC 处执行
... # 函数调用的返回位置
FUNC: # 子函数入口
pushq %rbp # 保存旧的帧指针,相当于创建新的栈帧
movq %rsp, %rbp # 让 %rbp 指向新栈帧的起始位置
subq $N, %rsp # 在新栈帧中预留一些空位,供子程序使用,用 (%rsp+K) 或 (%rbp-K) 的形式引用空位
- 保存返回地址和保存上一栈帧的%rbp 都是为了函数返回时,恢复父函数的栈帧结构。在使用高级语言进行函数调用时,由编译器自动完成上述整个流程。对于”Caller Save” 和 “Callee Save” 寄存器的保存和恢复,也都是由编译器自动完成的。
需要注意的是,父函数中进行参数压栈时,顺序是从后向前进行的。但是,这一行为并不是固定的,是依赖于编译器的具体实现的,在gcc 中,使用的是从后向前的压栈方式,这种方式便于支持类似于 printf(“%d, %d”, i, j) 这样的使用变长参数的函数调用。
教材学习中的问题和解决过程
- 问题1:ISA有什么作用?
- 问题1解决方案:ISA在编译器编写者(CPU软件)和处理器设计人员(CPU硬件)之间提供了一个抽象层
代码调试中的问题和解决过程
- 问题1:无法调用命令行参数
- 问题1解决方案:argv[0]指向输入的程序路径及名称。
argv[1]指向参数para_1字符串。
[代码托管]
学习进度条
代码行数(新增/累积) | 博客量(新增/累积) | 学习时间(新增/累积) | 重要成长 | |
---|---|---|---|---|
目标 | 5000行 | 30篇 | 400小时 | |
第一周 | 6/6 | 1/1 | 20/20 | |
第二周 | 117/123 | 1/2 | 5/25 | |
第三周 | 83/206 | 2/3 | 5/30 |
尝试一下记录「计划学习时间」和「实际学习时间」,到期末看看能不能改进自己的计划能力。这个工作学习中很重要,也很有用。
耗时估计的公式
:Y=X+X/N ,Y=X-X/N,训练次数多了,X、Y就接近了。
-
计划学习时间:XX小时
-
实际学习时间:XX小时
-
改进情况:
(有空多看看现代软件工程 课件
软件工程师能力自我评价表)