UVA-11167 Monkeys in the Emei Mountain(区间模型最大流+输出方案)
题目大意:有n只猴子,每只猴子都有一组参数(v,a,b),表示这只猴子在时间段[a,b]之间必须要喝v个单位水,并且每个时间单位只能和一个单位水,每次至少喝一个单位。但是只有一个水池,并且这个水池最多只允许m只猴子同时喝水。问能否满足所有的猴子喝水,若能,输出任意一种可行的方案。
题目分析:将每个猴子和每个喝水区间视作节点。将每只猴子向它对应的区间连弧,容量为该区间上能喝水的总单位数;从源点向每只猴子建弧,容量为对应猴子的总需求量;从每个区间向汇点建弧,容量为该区间单位长度乘以m,表示在该区间最多允许有m只猴子同时喝水。求得最大流看是否能满足最大需求,如果能,则输出方案,其中,猴子节点连向区间节点的弧上的容量便是一种可行方案,最后要注意区间合并。
代码如下:
# include<iostream> # include<cstdio> # include<cmath> # include<string> # include<vector> # include<list> # include<set> # include<map> # include<queue> # include<cstring> # include<algorithm> using namespace std; # define LL long long # define REP(i,s,n) for(int i=s;i<n;++i) # define CL(a,b) memset(a,b,sizeof(a)) # define CLL(a,b,n) fill(a,a+n,b) const double inf=1e30; const int INF=1<<30; const int N=50005; /////////////////////////////////// struct Edge { int fr,to,cap,fw; Edge(int _fr,int _to,int _cap,int _fw):fr(_fr),to(_to),cap(_cap),fw(_fw){} }; struct Dinic{ vector<Edge>edges; vector<int>G[N]; int d[N],vis[N],cur[N]; int s,t; void init(int n,int s,int t){ this->s=s,this->t=t; REP(i,0,n) G[i].clear(); edges.clear(); } void addEdge(int u,int v,int cap) { edges.push_back(Edge(u,v,cap,0)); edges.push_back(Edge(v,u,0,0)); int len=edges.size(); G[u].push_back(len-2); G[v].push_back(len-1); } bool BFS() { CL(vis,0); d[s]=0; vis[s]=1; queue<int>q; q.push(s); while(!q.empty()){ int x=q.front(); q.pop(); REP(i,0,G[x].size()){ Edge &e=edges[G[x][i]]; if(!vis[e.to]&&e.cap>e.fw){ d[e.to]=d[x]+1; vis[e.to]=1; q.push(e.to); } } } return vis[t]; } int DFS(int x,int a) { if(x==t||a==0) return a; int flow=0,f; for(int &i=cur[x];i<G[x].size();++i){ Edge &e=edges[G[x][i]]; if(d[e.to]==d[x]+1&&(f=DFS(e.to,min(a,e.cap-e.fw)))>0){ e.fw+=f; edges[G[x][i]^1].fw-=f; flow+=f; a-=f; if(a==0) break; } } return flow; } int MaxFlow() { int flow=0; while(BFS()){ CL(cur,0); flow+=DFS(s,INF); } return flow; } }; Dinic dinic; /////////////////////////////////// struct Monkey { int v,l,r; }; Monkey mon[105]; int n,m,sum,T[N]; vector<int>Time; int getID(int x) { return lower_bound(Time.begin(),Time.end(),x)-Time.begin(); } int main() { int cas=0; while(scanf("%d",&n)&&n) { scanf("%d",&m); sum=0; Time.clear(); REP(i,1,n+1){ scanf("%d%d%d",&mon[i].v,&mon[i].l,&mon[i].r); sum+=mon[i].v; Time.push_back(mon[i].l); Time.push_back(mon[i].r); } sort(Time.begin(),Time.end()); vector<int>::iterator it=unique(Time.begin(),Time.end()); Time.erase(it,Time.end()); int len=Time.size(); dinic.init(n+len+2,0,n+len+1); REP(i,1,n+1){ dinic.addEdge(0,i,mon[i].v); int a=getID(mon[i].l); int b=getID(mon[i].r); REP(j,a,b) dinic.addEdge(i,j+n+1,Time[j+1]-Time[j]); } REP(j,0,len-1) dinic.addEdge(j+n+1,n+len+1,m*(Time[j+1]-Time[j])); int flow=dinic.MaxFlow(); /*for(int i=0;i<dinic.edges.size();i+=2){ Edge &e=dinic.edges[i]; cout<<e.fr<<' '<<e.to<<' '<<e.cap<<' '<<e.fw<<endl; }*/ if(flow!=sum){ printf("Case %d: No\n",++cas); }else{ printf("Case %d: Yes\n",++cas); REP(i,0,len) T[i]=Time[i]; REP(i,1,n+1){ vector<int>temp; REP(j,0,dinic.G[i].size()){ Edge &e=dinic.edges[dinic.G[i][j]]; if(e.fw<=0) continue; int x=e.to-n-1; temp.push_back(T[x]); temp.push_back(min(Time[x+1],T[x]+e.fw)); T[x]+=e.fw; if(T[x]>=Time[x+1]){ T[x]=Time[x]+T[x]-Time[x+1]; if(T[x]>Time[x]){ temp.push_back(Time[x]); temp.push_back(T[x]); } } } sort(temp.begin(),temp.end()); for(int j=0;j+1<temp.size();){ if(temp[j]==temp[j+1]){ temp.erase(temp.begin()+j); temp.erase(temp.begin()+j); }else ++j; } printf("%d",temp.size()/2); for(int j=0;j<temp.size();j+=2) printf(" (%d,%d)",temp[j],temp[j+1]); printf("\n"); } } } return 0; }