UVALive-3645 Objective: Berlin (最大流:时序模型)

题目大意:有n个城市,m条航班。已知每条航班的起点和终点,还有每条航班的载客量、出发时间、到达时间。并且要求在任何一个城市(起点、终点除外)都至少要有30分钟的中转时间,求起点到终点的最大客流量。

题目分析:将航线视作一个点,如果航线u能经过某城市中转到航线v,则从u连一条弧到v。构造好图之后拆点,将点u拆成u和u’,对于任意一个u,都连一条弧从u到u’,容量为航线上的载客量;对于节点u,从u’向u邻接的节点v连一条弧,容量为无穷大;增加源点s,从s向起点为出发点的航线u连一条弧,容量为无穷大,增加汇点t,从终点为目标点的航线v对应的v’向t连一条弧,容量也为无穷大。最后,答案就是最大流。

 

代码如下:

# include<iostream>
# include<cstdio>
# include<cmath>
# include<string>
# include<vector>
# include<list>
# include<set>
# include<map>
# include<queue>
# include<cstring>
# include<algorithm>
using namespace std;

# define LL long long
# define REP(i,s,n) for(int i=s;i<n;++i)
# define CL(a,b) memset(a,b,sizeof(a))
# define CLL(a,b,n) fill(a,a+n,b)

const double inf=1e30;
const int INF=1<<30;
const int N=5050;

////////////////////////////////////////
struct Edge
{
    int fr,to,cap,fw;
    Edge(int _fr,int _to,int _cap,int _fw):fr(_fr),to(_to),cap(_cap),fw(_fw){}
};
struct Dinic{
    vector<Edge>edges;
    vector<int>G[N*2];
    int d[N*2],vis[N*2],cur[N*2];
    int s,t;

    void init(int n,int s,int t){
        this->s=s,this->t=t;
        REP(i,0,n) G[i].clear();
        edges.clear();
    }

    void addEdge(int u,int v,int cap)
    {
        edges.push_back(Edge(u,v,cap,0));
        edges.push_back(Edge(v,u,0,0));
        int len=edges.size();
        G[u].push_back(len-2);
        G[v].push_back(len-1);
    }

    bool BFS()
    {
        CL(vis,0);
        d[s]=0;
        vis[s]=1;
        queue<int>q;
        q.push(s);
        while(!q.empty()){
            int x=q.front();
            q.pop();
            REP(i,0,G[x].size()){
                Edge &e=edges[G[x][i]];
                if(!vis[e.to]&&e.cap>e.fw){
                    d[e.to]=d[x]+1;
                    vis[e.to]=1;
                    q.push(e.to);
                }
            }
        }
        return vis[t];
    }

    int DFS(int x,int a)
    {
        if(x==t||a==0) return a;
        int flow=0,f;
        for(int &i=cur[x];i<G[x].size();++i){
            Edge &e=edges[G[x][i]];
            if(d[e.to]==d[x]+1&&(f=DFS(e.to,min(a,e.cap-e.fw)))>0){
                e.fw+=f;
                edges[G[x][i]^1].fw-=f;
                flow+=f;
                a-=f;
                if(a==0) break;
            }
        }
        return flow;
    }

    int MaxFlow()
    {
        int flow=0;
        while(BFS()){
            CL(cur,0);
            flow+=DFS(s,INF);
        }
        return flow;
    }
};
Dinic dinic;
////////////////////////////////////////

struct Flight
{
    string p,q;
    int a,st,et;
};
Flight fl[N*2];
int n,m;
string p,q;

int f(int a,int b)
{
    int t1=(a/100)*60+a%100;
    int t2=(b/100)*60+b%100;
    return t1-t2;
}

int main()
{
    int limit;
    while(~scanf("%d",&n))
    {
        cin>>p>>q>>limit;
        scanf("%d",&m);
        dinic.init(m*2+2,0,m*2+1);
        REP(i,1,m+1) cin>>fl[i].p>>fl[i].q>>fl[i].a>>fl[i].st>>fl[i].et;
        REP(i,1,m+1){
            if(fl[i].p==p) dinic.addEdge(0,i*2-1,INF);
            if(fl[i].q==q&&fl[i].et<=limit) dinic.addEdge(i*2,m*2+1,INF);
            dinic.addEdge(i*2-1,i*2,fl[i].a);
            REP(j,1,m+1){
                if(i==j) continue;
                if(fl[i].q==fl[j].p&&f(fl[j].st,fl[i].et)>=30) dinic.addEdge(i*2,j*2-1,INF);
            }
        }
        printf("%d\n",dinic.MaxFlow());
    }
	return 0;
}

  

posted @ 2015-12-18 13:53  20143605  阅读(352)  评论(0编辑  收藏  举报