UVA-10779 Collectors Problem (网络流建模)
题目大意:有n个人,已知每人有ki个糖纸,并且知道每张糖纸的颜色。其中,Bob希望能和同伴交换使得手上的糖纸数尽量多。他的同伴只会用手上的重复的交换手上没有的,并且他的同伴们之间不会产生交换。求出Bob能拥有的最大糖纸种数。
题目分析:对于Bob拥有的糖纸,从源点s连一条弧,容量为Bob拥有的数量;对于Bob的小伙伴,从Bob连一条弧向他拥有的糖纸,容量为拥有数量减1,对于他不拥有的糖纸,连一条有向弧从糖纸到他,容量为1;对于每一种糖纸,连一条弧向汇点t。最大流便是答案。
代码如下:
# include<iostream> # include<cstdio> # include<cmath> # include<string> # include<vector> # include<list> # include<set> # include<map> # include<queue> # include<cstring> # include<algorithm> using namespace std; # define LL long long # define REP(i,s,n) for(int i=s;i<n;++i) # define CL(a,b) memset(a,b,sizeof(a)) # define CLL(a,b,n) fill(a,a+n,b) const double inf=1e30; const int INF=1<<30; const int N=80; struct Edge { int fr,to,cap,fw; Edge(int _fr,int _to,int _cap,int _fw):fr(_fr),to(_to),cap(_cap),fw(_fw){} }; vector<Edge>edges; vector<int>G[N]; int vis[N],d[N],cur[N],s,t,n,m,mark[30]; void init() { s=0,t=n+m+1; edges.clear(); REP(i,0,t+1) G[i].clear(); } void addEdge(int u,int v,int cap) { edges.push_back(Edge(u,v,cap,0)); edges.push_back(Edge(v,u,0,0)); int len=edges.size(); G[u].push_back(len-2); G[v].push_back(len-1); } bool BFS() { queue<int>q; CL(vis,0); d[s]=0; vis[s]=1; q.push(s); while(!q.empty()) { int x=q.front(); q.pop(); REP(i,0,G[x].size()){ Edge &e=edges[G[x][i]]; if(!vis[e.to]&&e.cap>e.fw){ vis[e.to]=1; d[e.to]=d[x]+1; q.push(e.to); } } } return vis[t]; } int DFS(int x,int a) { if(x==t||a==0) return a; int flow=0,f; for(int &i=cur[x];i<G[x].size();++i){ Edge &e=edges[G[x][i]]; if(d[e.to]==d[x]+1&&(f=DFS(e.to,min(a,e.cap-e.fw)))>0){ e.fw+=f; edges[G[x][i]^1].fw-=f; flow+=f; a-=f; if(a==0) break; } } return flow; } int Dinic() { int flow=0; while(BFS()){ CL(cur,0); flow+=DFS(s,INF); } return flow; } int main() { int T,k,r,cas=0; scanf("%d",&T); while(T--) { scanf("%d%d",&n,&m); init(); CL(mark,0); scanf("%d",&k); while(k--) { scanf("%d",&r); ++mark[r]; } REP(i,1,m+1) if(mark[i]) addEdge(s,i,mark[i]); REP(i,1,n){ CL(mark,0); scanf("%d",&k); while(k--){ scanf("%d",&r); ++mark[r]; } REP(j,1,m+1){ if(mark[j]>=2) addEdge(m+i+1,j,mark[j]-1); else if(mark[j]==0) addEdge(j,m+i+1,1); } } REP(i,1,m+1) addEdge(i,t,1); printf("Case #%d: %d\n",++cas,Dinic()); } return 0; }